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Abstract

The P -curve (Simonsohn, Nelson, & Simmons, 2014; Simonsohn, Simmons, &
Nelson, 2015) is a widely-used suite of meta-analytic tests advertised for detecting
problems in sets of studies. They are based on nonparametric combinations of p values
(e.g., Marden, 1985) across significant (p<.05) studies and are variously claimed to
detect “evidential value”, “lack of evidential value”, and “left skew” in p values. We
show that these tests do not have the properties ascribed to them. Moreover, they
fail basic desiderata for tests, including admissibility and monotonicity. In light of
these serious problems, we recommend against the use of the P -curve tests.
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1 Introduction

Forensic meta-analysis methods are designed to assess the quality of the evidence in sets

of results. Unlike typical meta-analysis, the aim is not substantive; rather, forensic meta-

analysis questions the evidence itself. Simonsohn et al. (2014a) and Simonsohn et al. (2015)

describe P -curve analysis, a suite of statistical tests to evaluate the “evidential value,”

or lack thereof, of collections of studies, potentially in the presence of poor researcher

behaviors. These poor behaviors—collectively referred to as p-hacking (Simmons et al.,

2011)—include selective reporting, post hoc data exclusion, and related data manipulation

carried out with an aim of producing statistical significance (p < .05) that otherwise would

not have been found.

The P -curve method has been widely applied to assess the evidence for individual phe-

nomena (e.g., Simmons and Simonsohn, 2017), collections of related empirical phenomena

(e.g., Hosseini-Kamkar et al., 2021; Cadario and Chandon, 2020), and even whole sub-

fields, such as experimental philosophy (Stuart et al., 2019). Breaking out of the academic

arena, the P -curve played a major role in a New York Times Magazine story: Domi-

nus (2017) outlines how Simmons and Simonsohn (2017) claim the evidence for a “power

posing” effect—whereby adopting an expansive physical posture increases risk taking and

testosterone levels, and decreases cortisol levels (Carney et al., 2010)—is lacking, based

on a P -curve analysis of 34 studies. In response, Cuddy et al. (2018) carried out another

P -curve analysis on a larger set of 55 studies including the original 34 studies and found

“clear” evidential value. The P -curve method is among the most popular of forensic sta-

tistical procedures. Given its widespread use, it is crucial that the P -curve procedure be

sound.

P -curve analysis is motivated by the distribution of statistically significant p values

under three possible conditions: First, under a null hypothesis where there is collectively

no effect among the many p values from studies being evaluated, the p values will often
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be uniformly distributed on the [0, .05] interval.1 Second, if the null hypothesis is false,

p values will tend to gather around 0 (what the authors dub “right-skew”). Finally, if

the null hypothesis is true and the researchers who carried out the original tests engaged

in p-hacking or similar behavior to lower the reported p values across the threshold of

significance (e.g., α = .05) then the distribution of significant p values may tend to gather

just below the significance threshold (“left-skew”). The P -curve statistical methodology is

carried out in an attempt to adjudicate between these three conditions.

Others have criticized the P -curve method of Simonsohn et al. (2014a) and Simonsohn

et al. (2015) from various angles. Ulrich and Miller (2015) argue that the original P -

curve tests (Simonsohn et al., 2014a) fail to detect when researchers selectively report the

outcomes of multiple tests, i.e., a researcher running multiple tests but only reporting the

result with the smallest p value; (c.f. Simonsohn et al., 2015). Erdfelder and Heck (2019)

present conditions under which right-skewed distributions of p values are not diagnostic of

evidential value, and conservative reporting practices under which left-skewed distributions

of p values are not diagnostic of p-hacking behavior; see also Bishop and Thompson (2016).

Finally, Montoya et al. (2024) show that when there are multiple choices of which p value

from a study to enter into a P -curve analysis, this choice has an impact on the analysis,

despite it often being arbitrary.

These critiques are important. Our approach in critiquing P -curve analysis, however, is

different: we examine the soundness of the statistical procedure itself. We follow two broad

lines of argumentation. In Section 3, we demonstrate that the statistical tests comprising P -

curve analysis are logically disconnected from the arguments presented in Simonsohn et al.

(2014a) and Simonsohn et al. (2015), which leads to poor test behavior and unsupported

claims. In the second line of argumentation we show that even if the general interpretation

of the tests were sensible, the tests have poor statistical properties. These poor properties

1It should be noted that the condition for a valid p value is not uniformity, but that the p values are
uniform or stochastically dominate a uniform. The P -curve authors assume that tests are not conservative.
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include extreme sensitivity (Section 4.1.1), test inadmissibility (Section 4.1.2), and, perhaps

most disturbing, nonmonotonicity in the evidence (Section 4.1.3).

2 What is the P -curve?

There are two sets of methods Simonsohn et al. have called “P -curve”: one set comprises

meta-analytic significance tests, which we discuss in this manuscript. Simonsohn et al.

(2014b) also developed methods for estimating effect sizes which we will only mention in

passing (though they are related to their method for estimating “average power”, which

we discuss later). For a critique of the second set of P -curve methods, see McShane et al.

(2016). Counterintuitively, in the context of the meta-analytic tests “P -curve” does not

refer to the distribution of p values (c.f. Ulrich and Miller, 2018); “P -curve” refers to tests

based on sums of transformed p values.

The basic model underlying the P -curve procedure is motivated by an assumption that

selective reporting—in particular, the difficulty of publishing statistically nonsignificant

findings—distorts the record of nonsignificant results in an unknown way, but that signifi-

cant results provide for “unbiased inferences” (Simonsohn et al., 2014a, p. 535). Thus, the

first step in P -curve analysis is to collect test statistics for meta-analysis and then discard

all test statistics that yield p > αpc, where the publication criterion (pc) is αpc = .05 by

default. The statistically significant test statistics are treated as coming from a truncated

distribution, where the truncation point is determined by the publication criterion.

Simonsohn et al. (2014a) and Simonsohn et al. (2015) refer to three tests: a “test of

evidential value/right skew2”, a “test of lack of evidential value”, and a “test of left skew”.

We refer to the 2014 version of these tests as EV , LEV , and LS; the 2015 versions, we

refer to as EV ∗, LEV ∗, and LS∗. The distinction between them is meta-analytic, which

2When Simonsohn et al refer to “right skew”, they mean the skew of the “true” distribution of p
values implied by underlying distributions’ noncentrality parameters. This will be uniform when the null
hypothesis is true and right-skewed when the null hypothesis is false under many, but not all, common
tests. See Gelman and O’Rourke (2014) for further critical discussion.
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we describe shortly.

The P -curve method is defined for a variety of common test statistics (e.g., z, χ2, t,

F , r). Two-tailed z or t statistics are squared to yield χ2 or F statistics, respectively.

Two-tailed Pearson correlations are also converted to F statistics. To demonstrate the

method, we could choose either χ2 or F statistics. We use χ2
1 test statistics for simplicity

and because they will be familiar due to the link with the standard Normal. F statistics

have similar issues to the ones we describe (Section 4.1.2).

Consider a random variable X with a truncated noncentral χ2
1 distribution:

X ∼ noncentralχ2
1(λ, tα),

where λ is the noncentrality parameter and tα is a left truncation value (e.g., the

critical value for the test of λ = 0, F−1
χ2
1
(1 − αpc) ≈ 3.84 for αpc = .05 where F is a

cumulative distribution function). EV and EV ∗ test the null hypothesis that λ = 0 against

the alternative that λ > 0. Simonsohn et al. (2014a) interpret a rejection as indicating

that “selective reporting [is] ruled out as sole explanation for findings”/“evidential value”

(p. 535).

Tests LEV and LEV ∗ test the null hypothesis that λ ≥ λ′, where λ′ is chosen as the

noncentrality parameter that would lead to a 1/3 probability of statistical significance.

For χ2
1 test statistics, λ′ = 2.34. The 1/3 probability of significance is an arbitrary value

selected by Simonsohn et al. (2014a), described as “merely a suggestion” (p. 538). The

value of 1/3 is hard-coded in their online app and cannot be changed. In reviewing papers

that cited Simonsohn et al. (2015), we did not encounter any authors that opted for a

different value.

Test LS is identical to test LEV except that it tests the less arbitrary null hypothesis

that λ ≥ 0; that is, it will reject when the observed test statistic is small under every possible

noncentrality parameter. It is thus a test of the fit of the whole model. The analogous test
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LS∗ was never developed by the authors and test LS was dropped without explanation

from their online app. The properties of the tests will be similar to LEV/LEV ∗, so we will

not focus on these tests directly (but see the Supplement for additional commentary).

Let pe and pn refer to the p values for tests EV and LEV respectively (“e” for “evi-

dential value”, “n” for “no [lack of] evidential value”) for a single study. Here pe = p/αpc

is simply the p value from the original test renormalized by αpc to account for the trun-

cation, and is small when X is large. pn is the probability of obtaining a larger p value

than the one observed, but still less than αpc, given noncentrality parameter λ′: pn =

(Fχ2
1(λ

′)(X) − Fχ2
1(λ

′)(tα))/(1 − Fχ2
1(λ

′)(tα)). pn is small when X is near the significance

criterion, approaching 0 at αpc.

Tests EV and EV ∗ dramatically increase the evidence required to argue for an effect:

a single study’s results must be surprising even among significant studies (p < α2
pc) in

order to be said to have “evidential value”. This is the natural effect of taking statistical

significance for granted due an extreme file-drawer effect. On the other hand, p values near

the significance criterion are potentially flagged as problematic by the remaining tests.

Consider a sequence of statistically significant study results Xi, i = 1, . . . , Kα modeled

as independent truncated χ2
1 variates with noncentrality parameters λi, and let Kα be the

number of results that would be significant at level α. We drop α by default to mean all

results significant at the conventional α = 0.05 level. Define p values pe,i, pn,i analogously

as Xi.

Simonsohn et al. use two methods to combine the p values from the individual tests

into a single test statistic. In 2014 they use Fisher’s method of summing the logarithms of

p values (as do van Assen et al. (2015), who suggest test EV at around the same time);

in 2015 they use Stouffer’s method of summing probit-transformed p values (see Marden

(1985) p. 1536 for a description of various meta-analytic methods for combining p values).

Under the null hypothesis λi = 0,∀i the resulting sums have central χ2
2K and Normal
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distributions, respectively; p values are computed relative to these null distributions:

pe,· = 1− Fχ2
2Kα

(
−2

Kα∑
i=1

log(pe,i)

)
(Simonsohn et al., 2014)

p∗e,· = Φ

(
1√
Kα

Kα∑
i=1

Φ−1(pe,i)

)
(Simonsohn et al., 2015)

where Φ and Φ−1 denote, respectively, the cumulative distribution function of the uni-

variate normal distribution and its inverse. We can define pn,· and p∗n,· analogously. For

demonstration purposes, see our interactive app that performs the P -curve tests at https:

//richarddmorey.github.io/pcurveAppTest/.

For the meta-analytic tests EV and EV ∗ the null hypothesis tested is that λi = 0 in

all studies; hence, the alternative is that λi > 0 for at least one i. For LEV and LEV ∗,

the null hypothesis is that all λi ≥ λ′; hence, a rejection would typically be interpreted as

favoring the alternative λi < λ′ for at least one i.

Simonsohn et al’s (2015) change from summing logarithms (2014) to summing probits

(2015) was accompanied by a change in their online app (Simonsohn et al., 2017), which no

longer offers the 2014 tests. Citing Abelson (1995), their justification was that the probit

combination method is “less sensitive to a few extreme results” (p. 1149), a property they

preferred. This choice has dramatic implications for the statistical properties of the method,

to which we turn later.

A second change that Simonsohn et al. (2015) made was to define a procedure including

the “full” P -curve, as described above and a “half” P -curve, which is defined analogously

but the truncation point is p < αpc/2 instead of αpc. They argue this accounts for “ag-

gressive p hacking”: that is, that some people’s target significance criterion when engaging

in bad behaviour may be lower than 0.05. They (arbitrarily) choose half the usual crite-

rion as a secondary criterion and build a new test procedure: “We introduce the following
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Table 1: Cross tabulation of the results of P-curve analyses in papers that cite Simonsohn
et al. (2015).

Test K

EV* LEV* N % Med. Range

p ≥ 0.05 25 9.3% 9.0 (1-22)
p ≥ 0.05 p < 0.05 12 4.4% 17.5 (6-41)

Did not report 5 1.9% 5.0 (3-35)
p ≥ 0.05 189 70.0% 19.0 (1-569)

p < 0.05 p < 0.05 2 0.7% 65.0 (60-70)
Did not report 37 13.7% 13.0 (2-282)

novel test of evidential value: A set of studies is said to contain evidential value if either

the half P -curve has a p < .05 right-skew test, or both the full and half P -curves have

p < .1 right-skew tests.” (Simonsohn et al., 2015, p1151, emphasis in original) For most

of this manuscript we do not use this compound test procedure, instead concentrating on

each test on its own. We return to the compound criterion later to show that it leads to

nonmonotonicity in the evidence.

2.0.1 Use of the methods in the literature

As of July 2024, Simonsohn et al. (2014; log method) and Simonsohn et al (2015; pro-

bit method) collectively have about 1200 citations, most of which are applications of the

method. We reviewed all P -curve tests in the 186 papers that cited Simonsohn et al. (2015);

see Table 1 for a summary. More details can be found in the Supplement. The vast major-

ity of applications of EV ∗ were significant (84.4% of P -curves), and the modal conclusion

from applying P -curve methodology was “evidential value” for whatever set was reported.

Only rarely (4.4%) did a P -curve analysis yield a statistically nonsignificant EV ∗ test and

a significant LEV ∗ test (supposedly indicating an “lack of evidential value”).
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3 Conceptual issues with the P -curve

Before our formal statistical critiques of the P -curve, we offer a number of critiques cen-

tering on its conceptualization and use.

Absurd repeatable process. The repeatable process assumed by the P -curve au-

thors (and their power analyses) uses a fixed number of significant results for all repetitions.

Given that p values are random variables, it is quite strange to assume that a given number

of draws from a distribution of p values will yield exactly the same number of p values less

than .05 (both p-hacked and non-p-hacked) each time. This naturally leads to absurdi-

ties. If we take this assumption at face value, then researchers would also be p-hacking to

non-significance (i.e., above .05) to maintain a fixed number of significant p values across

repetitions. The important critique here is that the P -curve authors do not consider plau-

sible models of researcher behavior and hence ignore an important source of variability.

Not tests of skew. Simonsohn et al. (2014a, 2015) describe their tests in terms of the

skew of the observed p values (i.e. “P -curves that are not right-skewed suggest that the set

of findings lacks evidential value,” Simonsohn et al, 2014a, p. 535). However, the P -curve

tests are all based on sums of transformed p values. There are many sets consistent with a

given sum: for instance, any sum of K values is consistent with a set of K identical values.

This set has no skew. Manipulation of this set of identical values can yield sets of left or

right skew with the same sum. The test is only responsive to the size of the sum, not the

skew of the values within it. It is true that highly right-skewed samples of p values often

lead to rejections of EV ∗, but left-skewed samples can do the same.

Given that the theoretical distribution of p values when at least one λi > 0 is right-

skewed (assuming no poor researcher behavior), one might be tempted to consider a test

of all λi = 0 with the alternative at least one λi > 0 a test of skew. In this case, there is

nothing special about skew; we could just as easily regard the P -curve tests as tests of the

expected p value (because the expected value of the p values decrease as some λi increases),
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or the variance (which decreases as some λi increases).

Moreover, under the assumptions of Simonsohn et al. (2014a, 2015), there are no effect

sizes that would lead to left skew (i.e. a preponderance of p values near the publication

threshold). Thus tests of λ cannot be tests of left skew, despite that they advertise a test

of left skew (LS).

Taken together, the authors’ use of the concept of skew is inconsistent with both sample

skew and population skew. The P -curve tests are simple tests of noncentrality parameters;

introducing the concept of skew obfuscates how the tests work.

Noncentrality parameters, not effect sizes. Tests of noncentrality parameters are

not equivalent to tests of effect sizes. Given that the input to the P -curve procedures is a

set of p values, and one persistent critique of p values is that they confound effect size and

sample size (e.g. Berkson, 1938, onward), one might wonder how it is that the P -curve

tests can be tests of effect size. In truth, they are not.

When testing the null hypothesis that the effect size is 0, we can elide the difference

because when the noncentrality parameters are 0, so are the effect sizes. Tests EV and

EV ∗ are tests of whether the average transformed p value is what would be expected if all

considered effect sizes are exactly zero, with an alternative that at least one noncentrality

parameter λi > 0.

Tests LEV and LEV ∗, on the other hand, are tests of whether the average transformed

p value is what would be expected if the χ2
1 noncentrality parameters, from all considered

studies, are all larger than 2.34 (mutatis mutandis for other test statistics). In a typical two-

tailed z test (performed as a χ2 test from which the Xi values may derive) the noncentrality

parameters are λi = δ2iNi, where δi and Ni are standardized effect size and effective sample

size, respectively. The hypothesis being tested by LEV and LEV ∗ is dependent on the

design of the studies at hand: they are tests whose alternative hypothesis is that “for at

least one study i, |δi| <
√

2.34/Ni.” This is in contrast to Simonsohn et al.’s (2014a)
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claim that LEV , for instance, is a test “not that the effect is zero, but that it is very small

instead” (p. 537). Conflating effect size with noncentrality parameters obfuscates what the

hypotheses actually are; moreover, there is not a single effect size as implied by “the effect

size”: each study will have its own noncentrality parameter.

Not about the “power” in a set. Simonsohn et al. (2014a) claim that tests LEV

and LEV ∗ are “test[s] for power of 33%” (p. 537). In a companion paper, Simonsohn et al.

(2014b) suggest that that the “P -curve can be used to estimate the average underlying

statistical power of a set of studies” (p. 676; though it should be noted that the P -curve

analysis in that paper is slightly different, though related, to the P -curve analysis we discuss

here). There are two reasons why this is not true. The first is conceptual: their “power”

is a function of the true effect size, which is at odds with the classical concept of power (a

function of counterfactual, not true, effect sizes). The second is statistical: their estimate

is inconsistent, even if taken at face value. We address the latter critique in Section 4.3.

Logical disconnect between statistical hypotheses and “evidential value”. It

is common for authors to interpret the results of the P -curve procedures in terms of the

set of studies, of a broader research area, or in terms of a theoretical construct (like a

psychological “effect”). Researchers may even split a meta-analysis into subsets and use

P -curve to look for where the evidential value lies (e.g. Stuart et al., 2019).

When rejecting the null hypotheses of EV , EV ∗ the natural conclusion is that at least

one noncentrality parameter is non-zero. Likewise, when rejecting the null hypotheses of

LEV , LEV ∗ the natural conclusion is that at least one noncentrality parameter is less than

2.34 (c.f. Section 4.2). The P -curve, however, is intended to draw conclusions regarding

properties of sets of studies; these null and alternative hypotheses, which still involve

individual studies, are clearly logically disconnected from this purpose. For any of the six

tests, the only proper conclusion to draw is that it is not the case that all the studies have

the property in question.
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If a single study in a set of 50 truly had a non-zero noncentrality parameter, would

it be valid to claim that, for example, the corresponding literature from which the set is

drawn is high-quality? Clearly not; however, it is common for P -curve practitioners to

reject EV or EV ∗ and come to a similar conclusion. For instance, Wilde (2022) points to

a statistically significant EV ∗ test and writes “We should think of this result as a quality

control stamp supporting the validity of the widely-noted correlation [between jaundice

and autism]” (p. 23). Rusz et al. (2020) claims that a significant EV ∗ test means that

“this set of studies contains evidential value for reward-driven distraction.” (p. 886).

The problem is analogous for LEV and LEV ∗: should a single study with a small sample

size and smaller-than-expected noncentrality parameter “contaminate” an otherwise robust

set of studies? For all tests, the use of a sum in computing the meta-analytic test statistic

ensures this contamination will happen, but the typical conclusions based on that sum are

far removed from what is warranted.

It is also worth pointing out that “evidential value” is not a well-defined statistical or

scientific concept and the P -curve tests can come to contradictory conclusions regarding it.

It is possible for test EV/EV ∗ to reject and for LEV/LEV ∗ to reject at the same time (see

West et al. (2021) for a real example in the literature). A set surely cannot both contain

evidential value and lack it.

4 Statistical properties of the P -curve

4.1 Properties of tests EV and EV ∗

4.1.1 Undue sensitivity at the critical boundary

Consider a hypothetical set of three studies, where each study reports the results of a single

z test as follows: z1 = 4; z2 = 3.4; and z3 = 1.964. If we test the “evidential value” for these

studies using EV ∗, we obtain p∗e,· = 0.048. Therefore, we would conclude that this set “has
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Figure 1: Transformation from the truncated χ2
1 values to probit-transformed values that

will be summed to produce p∗e,· in test EV ∗. The points show the p values from the χ2
1

conditional on being above the left truncation point.

evidential value”. However, suppose that the authors of the original study 3 had decided

to round z3 to two digits instead of three, to be in line with a journal’s style requirements.

For a well-behaved meta-analytic procedure, this should produce a trivial change (if any)

in the overall test. If z3 = 1.96, however, test EV ∗ yields p∗e,· = 0.198. A small change

in the statistic—bringing it closer to the boundary through rounding—has caused a major

change in the p value and a difference in the conclusion at the standard level α = 0.05.

This sensitivity is the result of how the “robustness” was achieved in the 2015 switch to

the probit in the P -curve tests. Figure 1 shows the transformation from the truncated χ2
1

test statistics to the values to be summed for test EV ∗. Small χ2
1 values near the truncation

point are transformed to arbitrarily large values. This has the effect of exaggerating the

evidence against an effect when they are summed with other values. On the other hand,

large values of the test statistic are increasingly attenuated by the transform.

If we could summarize the main error in choosing the probit transform for this problem,

it is that the probit is a two-tailed transformation (strongest evidence at −∞ and +∞),

but test EV ∗ applies it to one-tailed test statistics (strongest evidence at +∞).

We can view the sensitivity as an interaction between the p values in a set and any
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Figure 2: Meta-analytic p values as the truncation bound is changed. Top: Test EV ∗;
Bottom: Test EV . Shaded regions show the truncation points where the p∗e,· (top) or pe,·
(bottom) is statistically significant. Small, black triangles at the bottom of each plot show
the location the 8 p values entered into the meta-analysis.

criterion. Recall that Simonsohn et al. (2015) proposed the “half P -curve” rule, which

combines a test where the truncation occurs at p = 0.05 with one where the truncation

occurs at p = 0.025. The probit transform causes test EV ∗ to be poorly behaved, because

a value near either criterion can completely negate all other evidence. The second criterion

also adds arbitrariness to the test. The reason for αpc = 0.05 is clear: it is the standard

threshold for statistical significance. The same cannot be said for the half P -curve’s αpc =

0.025, which was chosen arbitrarily. The test result can change radically depending on

which criterion we happen to choose for the “half” criterion. In fact, we can almost achieve

any test outcome we like.

To show this, we produced a set of 8 studies whose individual p values were 9-iles of the

distribution of statistically significant p values when λ = 3.84 (that is, the noncentrality

parameter yielded a 0.5 probability of significance in any single study). Figure 2 shows test

EV ∗’s p∗e,· (top) and EV ’s pe,· (bottom) as the truncation point changes.

Figure 2 (top) shows what happens for the constructed data set as we change the second

criterion (the “half” criterion). For test EV ∗ a single result near the criterion produces
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arbitrarily large p values. As the significance criterion drops, p∗e,· increases to 1. When a

study is then eliminated (pi ≥ αpc), p
∗
e,· drops from 1 to a much lower value. This is shown

in Figure 2 (top) as lines that swing wildly between 0 and 1. This value of p∗e,· is almost

entirely dependent on which αpc we choose for the “half” test. Although Simonsohn et al.

(2015) chose 0.025, any choice of αpc between 0.02 and 0.04 could represent “ambitious”

targets for p hacking and would be defensible for the half P -curve’s purpose. If the set

contains even a single p value in that range, there is a choice of criterion that will negate all

other evidence. Our hypothetical data set contains a study with p = 0.02495 that is close

to the half P -curve’s sharp discontinuity at 0.025, and thus is in one of the wild upward

swings (p∗e,· = 0.193).

Test EV is much less sensitive. Because the central χ2
1 distribution has an exponential

right tail, the test EV ’s p value will be approximately proportional to e−X/2 and hence

log pi ∝ X. Because the transformation used for test EV is almost linear in the test

statistic, there is little sensitivity just above the lower bound and no attenuation as the

test statistic grows.

In Figure 2 (bottom), we can see mild discontinuities in test EV ’s p value when a study

crosses the “half” P -curve boundary and moves from being within the set to outside the

set. When combining logarithms, a value at the criterion has log(1) = 0 and hence does

not contribute to the sum. However, when the study is dropped (pi ≥ αpc) the degrees

of freedom of the test decrease so the significance criterion changes. Dropping the “dead

weight” study near the criterion decreases pe,· slightly. As the truncation αpc becomes

very low and few studies are left in the set, the changes in degrees of freedom are more

substantial and hence the differences are larger.

4.1.2 Inadmissibility

Although the sensitivity we outlined in the previous section looks objectionable, it raises

a question: how much sensitivity is too much? Simonsohn et al’s (2015) changed from
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the log to the probit transformation simply because they they preferred the answers from

the probit transformation. This arbitrariness is objectionable, but if we merely object to

the sensitivity, we have not done much better. We must examine the tests more closely to

understand whether the sensitivity is a symptom of some deeper issue with how the test is

using the data.

If we assume under the null hypothesis that p values have a uniform distribution, then

we can choose any inverse CDF as a transformation; under the null, the transformation

will have the corresponding distribution. Choosing a family of distributions that is closed

under summation, such as χ2 (the log method) or Normal (the probit method) ensures

that we can easily determine the null distribution. Thus, in the applied meta-analytic

literature, combination procedures are chosen mostly for this particular convenience, along

with heuristics about how these methods weight p values (Abelson, 1995).

Since Birnbaum (1954; see also Matthes and Truax, 1967), however, it has been known

that there is much more to the choice of transformation for meta-analytic combinations.

Understanding the distribution under the null hypothesis is not enough; a transformation

must also be tailored to the test statistics in a way that respects their distribution under

alternative noncentrality parameters. Some transformations yield inadmissible tests: their

power function is dominated by some other choice of transformation for all alternatives.

Birnbaum showed that for exponential families, a necessary and sufficient condition for

admissibility is convexity of the acceptance region in the test statistic. Marden (1982)

later proved that convexity is also necessary and sufficient for noncentral χ2 distributions,

and we extend his proof to truncated noncentral χ2 distributions as used by the P -curve

procedures (see Supplement).

Figure 3 shows the acceptance regions for tests EV and EV ∗. Test EV ∗’s acceptance

region is concave, not convex, and must be so for all K owing to the probit transform.

Because limp→1 Φ
−1(p) = ∞, a value of pi close enough to αpc can always negate any
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Figure 3: Acceptance regions for tests EV and EV ∗ when K = 2. Note that the acceptance
region for test EV ∗ is concave.

amount of evidence from the other K − 1 studies. Indeed, this issue is in play in Section

4.2.2; even more extreme examples could be constructed with a single suitably small p

value. The acceptance region has nonzero volume along each of the k rays from the “origin”

(tα, . . . , tα) and cannot be convex for any K.

Test EV ’s acceptance region, on the other hand, will be approximately bounded by a

simplex due to the exponential tail of the χ2
1 distribution. Adapting Marden’s proof to

the P -curve procedures reveals that the probit transform yields an inadmissible test when

combining χ2 test statistics, but the log transform is admissible.

One of the properties of a convex acceptance region is that a single large value in any of

theXi values can guarantee a rejection. Test EV ∗, though, was specifically engineered to be

“robust to extreme results” through the switch to the probit transform (Simonsohn et al.,

2015, p. 1149). But any test with a convex acceptance region—any admissible test—will

have precisely the property that Simonsohn et al. object to: sensitivity to large, individual

Xi values. All symmetric admissible tests of size α must reject for values when one Xi is

beyond some minimum value. In engineering out a reasonable property of the test, they

have produced a test EV ∗ that is inadmissible and inappropriately sensitive to small values
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of Xi. Indeed, it is hard to see why a test of the hypothesis that “all λi = 0” should not

reject if one of the test statistics is large enough.

Unfortunately, simply knowing that a test is inadmissible does not tell us which other

test dominates it; it also does not tell us how the test will perform against other tests,

including admissible ones. It is not the case that every admissible test will dominate every

inadmissible test. We should therefore compare power curves across tests to see when, in

particular, the inadmissible test might be failing to capture the information in the data.

Inspection of the acceptance regions in Figure 3 and previous work with non-truncated

χ2 variables (Koziol and Perlman, 1978) suggests that the best case scenario for test EV ∗

will be when all studies have the same noncentrality parameter. If the studies are hetero-

geneous, on the other hand, the power of test EV ∗ would be expected to suffer because

its acceptance region over-weights test statistics near the significance criterion. Figure 4A

and B show power curves that confirm this intuition. In all cases, the power for test EV ∗

is lower than test EV ’s; in the heterogeneous case, test EV ∗’s power is dramatically lower.

Figure 4C shows that the power reduction is still substantial when several studies (in this

case, four) have a moderate effect size and the others are null.

We want to stress, however, that our main complaint is not about low power per se:

rather, the lower power from inadmissibility is a sign that the test is not using information

in the data regarding the hypotheses being tested. Power is an average property of a test;

we would also like for a test to yield reasonable results for particular data sets we might

observe. Test EV ∗ has had a reasonable property—the sensitivity to a few large values—

engineered out, and thus its power suffers against other tests even in cases where there

are not individual large values. The probit transform exaggerates negative evidence and

attenuates positive evidence, so it is not a surprise that its power suffers.

Extension to F statistics Simonsohn et al. (2014, 2015) square t statistics to obtain

F1,ν2 test statistics, and transform Pearson correlations to t test statistics that are then
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squared. Marden (1982) showed that for noncentral F statistics, probit combinations are

always inadmissible (see Supplement for our extension to truncated F statistics). He also

showed, however, that Fisher’s method of combining logarithms is inadmissible with non-

central F statistics when the numerator degrees of freedom are less than 2, which rules out

squared t statistics. This implies that that for some αpc, test EV will also be inadmissible;

however, admissibility conditions for EV with t statistics are not known. We show the

dramatic power implications for F statistics analogous to the ones for χ2 statistics in the

Supplement.

The attraction of particular transformations is that they are supposed to be “nonpara-

metric” (Marden, 1982) and thus widely applicable to many underlying test statistics. But

if different test statistics require different transformations prior to summing to respect the

evidence, this raises the question of whether one should combine them as the P -curve does.

Most of the statistical literature on meta-analytic combination methods focuses on sum-

ming statistics in the same family, not across families. More theoretical work in this area
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is necessary before one can have confidence when combining across families.

4.1.3 Nonmonotonicity in the evidence

One property that is generally considered essential for a reasonable statistical test is mono-

tonicity in the evidence. Increasing the amount of evidence in a single data point should

never cause a test to move from rejection to acceptance. It is such a reasonable and widely-

met condition, in fact, that it led Birnbaum (1955) to search for other ways to distinguish

meta-analytic combination methods, such as admissibility.

Simonsohn et al’s (2015) compound half P -curve procedure creates a test that is non-

monotone in the evidence, due to the hard boundaries between the full and half P -curve.

The half P -curve adds a second boundary in the middle of the test statistic space. When

a test statistic lies just on the smaller side of this boundary, it contributes to the strength

of the evidence in the full P -curve but not at all to the half P -curve. If the test statistic is
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increased slightly to be just on the larger side of the half P -curve boundary, it contributes

slightly more evidence to the full P -curve, but penalizes the p value of the half P -curve

due to its proximity to the criterion.

In the case of the probit combination method, this reduction of pe,· for the half P -curve

is extreme due to the mapping of the boundary to +∞. To show this, we constructed a

demonstration data set containing k = 15 χ2
1 test statistics (values given in the Supple-

ment). We then introduced an additional data point, manipulating the test statistic from

small to large.

Figure 5A shows how the full and half P -curve tests respond to this increase in the

evidence. The shaded regions show where the test is statistically significant by Simonsohn

et al’s (2015) compound rule, and the shading color shows why. Before the new point

reaches the half P -curve boundary, it can increase the evidence in the full P -curve. When

the full P -curve’s pe,· drops below 0.1, both the half and full P -curve are less than 0.1,

triggering Simonsohn et al’s (2015) compound rule.

However, when the new test statistic crosses the half P -curve boundary, all other ev-

idence in the half P -curve is negated and the half P -curve’s pe,· increases to 1. Thus the

compound procedure no longer indicates rejection of the null hypothesis. As the test statis-

tic increases, it again begins to contribute evidence to the half P -curve and eventually the

compound rule indicates rejection. The half P -curve criterion leads to moves from nonre-

jection, to rejection, back to nonrejection, then back to rejection again in spite of an steady

increase in the evidence away from the significance threshold αpc.

This behaviour is especially strange considering the intention of the compound pro-

cedure: to help make the procedure robust to “p hacking”. As Simonsohn et al. (2015)

make clear, p hacking to smaller p values is more difficult; a nonmonotone procedure, then,

penalizes a set for containing a value that is less consistent with p hacking when it crosses

the half P -curve boundary.
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Figure 5B shows the rejection regions of the compound test procedure when two new

data points are added instead of one. As the arrow shows, it is possible to increase the two

data values and change decisions five times along the way. More changes are possible when

taking into account larger numbers of data points changing, though higher-dimensional

spaces are difficult to visualize.

Can the half P -curve procedure be rescued by returning to the logarithmic combination

procedure, which is less sensitive at the boundary? No; the log method is less sensitive,

but still produces a non-monotone test procedure due to the half P -curve boundary. We

leave this demonstration to the Supplement.

One could argue that the P -curve’s truncation at 0.05 causes the same kind of nonmono-

tonicity, even without applying a compound decision rule. Imagine a set of hypothetical p

values yielding a statistically significant test EV ∗. Consider adding a new point to the set.

A new hypothetical p value just above 0.05 is clearly some evidence, and a hypothetical

p value just below 0.05 cannot represent less evidence (i.e., p hacking cannot reduce the

evidence from the un-p-hacked data). A hypothetical new p value just above 0.05 would be

completely ignored, leading to the same significant EV ∗ test as without that new value. A

new hypothetical p value just below 0.05 would negate the evidence in the rest of the set,

causing P -curve users to doubt the whole set. The hard threshold of the P -curve leads to

a fundamental nonmonotonicity, even without their compound decision rule.

4.2 Properties of tests LEV and LEV ∗

Tests LEV and LEV ∗ are tests of the hypothesis that at least one noncentrality parameter

in a set of studies is smaller than λ′ ≈ 2.34, after conditioning on statistical significance.

The first critique—and the most substantial one, in our opinion—is that it is not clear why

one would test this hypothesis. Simonsohn et al. (2014a) have interpreted this test as a

test of “lack of evidential value”, implying that if this test rejects, then this means that
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the distribution of p values “is flatter than one would expect if studies were powered at

33%”. But there is no logical connection between the statistical hypothesis test and their

interpretations.

To see this more clearly, consider that the test statistics for LEV and LEV ∗ are sums

of transformed p values. As one pi value in the set approaches αpc, pn,i and p∗n,i will

approach 0, and hence pn,· and p∗n,· must approach 0. This is not necessarily problematic

for a test that at least one noncentrality parameter is small, but it is inconsistent with the

interpretation that the whole set “lacks evidential value” or that it is about the “flatness”

of the distribution of p values. The flatness of the distribution of p values will hardly

change as a single p value approaches 0.05, yet the test is guaranteed to eventually reject

regardless of how large the other test statistics are.

A further reason why the hypothesis is uninteresting is that noncentrality parameters

confound effect size and sample size.

4.2.1 Problematic interpretation due to the bounded parameter space

The boundedness of the parameter space at λ = 0 further complicates the interpretation

of tests LEV/LEV ∗. When a significance test rejects, the conclusion is that the null

hypothesis misfits in some way. With an unbounded parameter space, the move from “the

null misfits” to “the effect size is large” does not seem problematic because no matter how

large the test statistic is, there are parameter values consistent with it (though in practice

we try to ensure rejection isn’t due to misfit of another aspect of the model).

With a parameter space bounded below, however, as a test statistic shrinks it moves

from supporting small effect sizes to supporting model misfit. A classic example of this

logic is Fisher’s famous critique of Mendel (Fisher, 1936; Edwards, 1986): small test statis-

tics lead not to a conclusion that the noncentrality parameter is small, but rather that

something has gone wrong. In the case of LEV/LEV ∗, there is little difference between

the critical p value in a single study that would lead to a rejection of λ ≥ 2.34 at α = .05,
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and the critical p value that would lead to a rejection of the model outright at α = .05

(i.e., reject λ ≥ 0): 0.045 and 0.0475, respectively. A rejection of the hypothesis that “all

λi ≥ 2.34” may not be grounds for claiming that the noncentrality parameter is small; it

may only be grounds for claiming that the null model misfits. The test statistic is so small

that we reject the hypothesis that every test statistic was an independent realization of a

random variable of the sort specified by the meta-analyst.

The P -curve authors might be satisfied in concluding “model misfit” instead of “there

is at least one small noncentrality parameter”: the misfit might be caused by p hacking.

This conclusion, though, does weaken what one can say on the basis of a rejection of the

null in tests LEV/LEV ∗, particularly because the null model is “all λi ≥ 2.34”. When

this test rejects we might ask, “so what?” A rejection of all noncentrality parameters,

is potentially more interesting; in the supplement we discuss misfit tests LS/LS∗ (and a

less-sensitive replacement).

4.2.2 Sensitivity at the criterion

We previously showed that test EV ∗ was highly sensitive to one value at the criterion, but

test EV was not. Test LEV , however, is very sensitive to a single value at the criterion,

while test LEV ∗ inherits the sensitivity of EV ∗.

The sensitivity of LEV is due to the effective reflection of the p values before entering

the values into the log transformation, instead of simply using the same test statistic as test

EV . A p value of .049, for instance, will yield a value to be summed of −2 log(0.0094) = 9.3;

considering that the expectation of each component of the sum is 2 (because each study

increases the degrees of freedom by 2), such a value has a lot of weight.

For test LEV this becomes extreme: consider six studies that yield Z = 8 combined

with a single study that yields χ2
195 = 228.58 (p = 0.0499997). Although six studes have

very large Z statistics, they are cancelled out by the single value near the significance

criterion. Adding to the problem, arbitrarily large test statistics are mapped to 0 in the
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sum because for large Xi values pn,i = 1 and log(1) = 0; hence, they do not contribute to

the sum at all! The example thus works just as well with six studies with Z = ∞. To

claim that a rejection of the null in test LEV indicates a “lack of evidential value” would

be absurd.

Owing to the thinner tails of the probit transformation test, LEV ∗ is less sensitive than

LEV , but it is still very sensitive. The reflection of the p value doesn’t change the sensitivity

from EV ∗ because the probit transformation is symmetric. The set Z = {1.964, 2.8, 2.8}

yields pn,· = 0.178. If an author were to round 1.964 to 1.96, this results in pn,· = 0.045.

As with EV ∗, something as trivial as rounding to two decimal places can radically alter

the result.

4.2.3 General properties of LEV and LEV ∗

For EV and EV ∗ the null hypothesis was a single point on the edge of the parameter space;

for LEV and LEV ∗, the null hypothesis that λi ≥ 2.34, ∀i is composite, unbounded, and

multiparameter. Lehmann (1952) showed that for such hypotheses, no analytic function

can yield rejection bounds for an unbiased test. LEV and LEV ∗ will thus be biased with

alternative regions where the power function is substantially less than the nominal α of the

test.

Admissibility with multiparameter tests is difficult to prove and in any case may not

yield suitable tests (Perlman and Wu, 1999). We are left in a situation where candidate

tests are not expected to dominate one another, and trade-offs between power in one or

another region of the parameter space must be considered. Due to the tests’ bias, balancing

Type I error across the null region and low power in the alternative region must also be

considered. The choice of test might be driven by which parts of the parameter space have

extremely poor detectability and which do not.

We consider K = 2 studies. Figure 6A shows the rejection regions for test EV ∗ and

LEV ∗. The rejection region for LEV ∗ is concentrated near small test statistics and along
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Figure 6: Rejection regions for tests EV ∗, LEV ∗ (panel A), and EV , LEV (panel B) when
k = 2.

the edges of the space where a single test statistic is small, again showing that a single

small test statistic can cause the test to reject. The rejection regions for EV ∗ and LEV ∗

are well-separated, indicating that it would be difficult for both tests to reject at the same

time (though not impossible; e.g., West et al. (2021)).

Figure 6B shows the rejection regions for EV and LEV . As with EV ∗ and LEV ∗,

the rejection region for LEV is spread along the values just near the significance criterion

for each test statistic. The rejection region for EV and LEV overlap much more than

for EV ∗ and LEV ∗, meaning that both tests can easily reject at the same time. This is

reasonable for tests whose alternatives are “λi > 0 for some i” (EV ) and “λj < 2.34 for

some j” (LEV ), but is obviously unreasonable for any interpretation in terms of “[lack of]

evidential value” or the “flatness” or “skew” of the distribution of p values.

Figure 7 shows power contours for K = 2 studies for tests LEV ∗ (A) and LEV (B).

The figures show the bias of both tests and that the power of one test does not dominate

the other. The relative thickness of LEV ’s rejection region along the “axes”, as shown in

Figure 6B, translates to higher power when a single test statistic is small. In contrast, the

thinness of the tails of the normal transform and hence LEV ∗’s rejection region (Figure
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6A) concentrates more of the power near the origin.

Although by construction, tests LEV and LEV ∗ are level-α tests of the null hypothesis

that “all noncentrality parameters are at least the noncentrality parameter that would yield

a one-third probability of statistical significance for the nontruncated test statistic,” we can

examine the power contours in Figure 7 and see that there is another hypothesis implied

at level α: effectively, “none of the noncentrality parameters are within some generalised

distance from the origin”. The generalized distance will depend on the choice of tuning

noncentrality being tested against, the transformation used, and the distributions of the test

statistics (e.g., χ2, F ). We also have the aforementioned issue of the bounded parameter

space. It is therefore difficult to characterize the inference one would draw from a rejection.

4.3 Power estimation

Within the official P -curve app, the authors provide a “power estimation” section using

same basic logic as the tests EV ∗ and LEV ∗. Their method is not documented in the

P -curve papers, but inspection of the code reveals the logic. It is best to regard this

not as “power estimation” but rather an estimate of an “overall” noncentrality parameter
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transformed to a standardized (0, 1) space using a corresponding CDF.

Suppose Xi (i = 1, . . . , K), represent K truncated noncentral χ2
1(λ, tα) variates. Then

Φ−1

(
Fλ(Xi)− Fλ(tα)

1− Fλ(tα)

)
∼ Normal(0, 1).

where Fλ is the CDF of the noncentral χ2
1(λ) distribution (nothing in this section depends

on this particular assumption; we make it for demonstration). Simonsohn et al. choose a

noncentrality parameter λ∗ that yields:

K∑
k=1

[
Φ−1

(
Fλ∗(Xi)− Fλ∗(tα)

1− Fλ∗(tα)

)]
= 0

One way to think about λ∗ is in terms of test LEV ∗: it is the null λ′ we would choose

for test LEV ∗ that would yield an LEV ∗ test statistic of Z = 0, a kind of estimate of an

overall λ. Then, q∗ = 1 − Fλ∗(tα) is taken as an estimate of the studies’ “power” if they

were run without publication bias (and hence without the need for “correction”).

Assume there is a population pλ of noncentrality parameters from which independent

sample values λ1, . . . , λK are drawn. For each λi, we then draw a corresponding truncated

test statistic Xi. The “average power” of the studies in the population is Eλ [1− Fλ(tα)].

We can examine the properties of q∗ as an estimate of the population average power.

Specifically, we can examine the consistency of q∗ as K → ∞. If the estimator is not

consistent, then even arbitrarily large sets of studies may not yield estimates close to the

true “average power”.

As K → ∞, λ∗ → λ′ such that

E

[
Φ−1

(
Fλ′(xi)− Fλ′(tα)

1− Fλ′(tα)

)]
= 0. (1)

where the expectation is taken over X and λ. If all λi = λ (no variability) then the estimate

will be weakly consistent (proof in the Supplement). If we assume variability in the true
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Figure 8: A: Demonstration distribution of effect sizes. B: Resulting distribution of the
values summed in the probit power estimation procedure.

noncentrality parameters, then the estimate is not generally consistent. Although there will

be a λ∗ that yields 0 expectation in Eq. 1, it needn’t yield Eλ[1 − Fλ(tα)] = 1 − Fλ∗(tα);

hence, the estimator is asymptotically biased.

As a demonstration, consider a one-sample design with a Normally distributed test

statistic z with mean δ
√
N and variance 1, where N is an effective sample size. Assume

for all studies, N = 100 and assume that variability in the effect size such that λ = δ2Neff

has an Exponential distribution with a scale of 10 (we could as easily vary the sample size

while keeping the effect size constant, or vary both). The corresponding distribution of δ

is shown in Figure 8A. Under these assumptions, the marginal probability of observing a

statistically significant effect as K → ∞ is 0.664.

The λ∗ that meets the condition in Eq. 1 is λ∗ = 9.493. As can be seen from the

density in Figure 8B, the test statistic has expectation 0, but is not normally distributed;

it has a longer right tail. The method had no chance of arriving at the correct answer: the

P -curve only uses the mean of the test statistic distribution, not the whole distribution,

implicitly assuming normality. Any situation more complicated than a single λ value will be

effectively impossible for the procedure. The estimated power is 0.869 which is 31% larger
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than it should be. Note that this bias is asympotic: the estimator is wildly inconsistent.

Note also that this estimate depends critically on the probit transformation; other methods

(e.g., based on LEV ) will yield different “power estimates”, even asymptotically.

In a discussion of the use of a related P -curve method to estimate effect sizes, the P -

curve authors (Simmons et al., 2018) claim that the P -curve can estimate average “power”

even when there is heterogeneity in effect sizes. What explains the discrepancy between our

demonstration that it fails even in the large sample limit, and their claim that heterogeneity

poses no problem for the P -curve? In short, their argument was based only on seven

simulations and no formal analysis. One can replicate our demonstration with their own

code, suggesting that they simply did not find a simulation violating their intuition. This

shows the downside of relying solely on simulation to support a method: it is limited by

the simulator’s imagination and confirmation bias. Formal analysis is harder, but can more

clearly define a method’s limits.

5 Conclusion

Based on our analysis of the P -curve’s properties, we offer several concrete recommenda-

tions. First: do not use Simonsohn et al’s (2015) compound decision rule. This would

reduce, but not fully eliminate, problems of nonmonotonicity in the evidence. Second: do

not use the test EV ∗, because the probit transformation is inappropriate for the random

variables used in the test. Third: do not use tests LEV/LEV ∗ or LS/LS∗ due to their

extreme sensitivity. Fourth: do not use the “power” estimates from the P -curve, because

these estimates are not generally consistent. Fifth: abandon misleading interpretations of

the P -curve tests in terms of “skew” and “evidential value”; instead, focus on the null hy-

potheses that are actually rejected. We are left only with test EV (if properly interpreted).

Test EV was eliminated from Simonsohn et al’s online app, but our online app computes

it. We also suggest, however, temporarily avoiding this test until more is understood about
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admissibility with F (1, ν2) statistics and combining across test statistic families.

From a conceptual perspective, it is more challenging to offer concrete recommendations.

We recommend that future work in this area focus on directly evaluating the higher-order

properties of whole p value distributions, rather than testing a simple transformed average

of truncated p values. Re-imaginings should also be based on explicit models of cheating

behavior that the developers wish to detect.

Given what is needed to improve the P -curve tests, we do not recommend their use

in their current form. Their statistical properties are problematic and it is not clear what

substantive conclusions they afford. Given the stated purpose of the P -curve—evaluating

the trustworthiness of scientific literatures—the stakes are too high to use tests with such

poor, or poorly-understood, properties.

Users of the P -curve procedure may object on practical grounds: the tests seem to

agree with what they suspect from a histogram of p values. Although the tests are poorly

constructed, the results are still driven by patterns in the data, and these patterns overlap

with those one might notice in such a histogram. But if the justification of the method

cannot rest on formal principles—and we argue the formal justification is shaky at best—

and proponents of the method decide instead to justify conclusions via agreement with

visual inspection, this raises the question of why the test was necessary in the first place.

As a final point, we suggest that meta-scientists be more skeptical of procedures like

the P -curve in the meta-scientific literature. Papers introducing them are often light on

statistical exposition, using metaphors and a few simulations to make sweeping arguments.

Simulation is a powerful tool and can help build intuition, but it is not a substitute for

formal analysis. Simulation may provide hints of problems with a procedure, but only if

the simulator’s formal knowledge helps guide the choice of simulations. A simulator might

quit after running a few simulations that tell them what they think is true while problems

remain uncovered. Given the implications of poor forensic procedures for science, all such
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procedures demand deeper formal scrutiny.
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1 Use of the P -curve methods in the literature

Test EV ∗ is by far the most-used test of those we consider. In order to better understand how the method
is used, we reviewed all articles that cited Simonsohn et al. [2015]: 186, as of July 2024. After removing
all papers that did not report a P -curve analysis or for which the methods of the analyses were not clear
(e.g., did not report the result, or did not report the number of studies in the meta-analysis), we found
270 P -curve analyses across 113 papers. Characteristics of these studies are shown in Table 1 of the main
manuscript.

Many authors using the probit method cite only Simonsohn et al. [2014] outlining the old method, in spite
of using Simonsohn et al.’s online app that uses the new 2015 probit-based method. Our goal is not a
comprehensive review, so we did not review those papers (of which there are nearing 1,000). Citations to
Simonsohn et al. [2015] will be enough to get a sense of how the method is used.

The median number of studies entered into a P -curve analysis was 16 (Min.: 1; Q1: 9; Q3: 28.75; Max.:
569). The vast majority of EV ∗ tests (228; 84.4%) were significant. The studies yielding a nonsigificant test
EV ∗ tended to have a smaller number of studies (median: 9) than those which were statistically significant
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for test EV ∗ (median: 18.5), which would be expected given the power benefits of having more studies in
the set.

Only a small minority of P -curve analyses yielded a significant LEV ∗ test in the absence of a statistically
significant EV ∗ test (12; 4.4%). Several P -curve analyses yielded significant results for both tests (2; 0.7%),
suggesting that these studies somehow had “evidential value” and lacked it at the same time. These numbers
show why the P -curve’s primary use is to argue that a set of studies has “evidential value”: very rarely is
there any other outcome, at least in the published literature considered by P -curve users.

2 Proofs of admissibility and inadmissibility.

Our proofs in this appendix draw heavily on Marden (1982). We find that test EV is admissible with χ2

test statistics and F statistics whose numerator degrees of freedom are ≥ 2. The conditions for admissibility
of test EV with F (1, ν2) test statistics is an open question. For values of αpc close to 1 it is inadmissible,
but it is possible that it is admissible for smaller values of αpc.

The proof in Section 2.1 can be roughly outlined as follows: in the first part, it is proven that all Bayes
tests have convex acceptance regions. Since Bayes tests form a complete class, tests with convex acceptance
regions form a complete class. Therefore all admissible tests have convex acceptance regions. In the second
part, it is proven that all tests with convex acceptance regions are admissible. Thus, for noncentral χ2

statistics, a convex acceptance region is necessary and sufficient for admissibility.

The proof in Section 2.2 follows a similar outline, but with separate necessary and sufficient conditions for
admissibility.

It follows from the proofs that test EV ∗ is inadmissible for χ2 statistics, and inadmissible for F statistics
when K > 2. Hence, the test is inadmissible for any situation in which P -curve analysis would be used.

2.1 Noncentral χ2

Let X = (X1, . . . , XK) be a sequence of noncentral χ2 variates, and the sample space of X is X = RK . We
prove here an extension of Marden (1982)’s Theorem 2.1 (p. 269), which states that for X, the class of tests
with monotone, decreasing, convex, closed acceptance regions in X form a minimal complete class.

Let fλ(x; ν) and Fλ(x; ν), x > 0, denote the density and cumulative density functions of a noncentral χ2

variate with ν degrees of freedom and noncentrality parameter λ, respectively. Let

gλ(x; ν, tα) = fλ(x; ν)
1 − Fλ(tα; ν) , x > tα

denote the density function of the left-truncated noncentral χ2 variate with ν degrees of freedom and non-
centrality parameter λ. Define Gλ(x; ν, tα) as the corresponding cumulative distribution function.

Let Ω0 = {λ1 = 0, . . . , λK = 0} and ΩA = Ωc
0.

The following definitions are chosen to be consistent with Marden (1982). We denote test functions on X as
ϕ(x), and the risk function r is

rλ(ϕ) =
{
E0(ϕ) ifλ ∈ Ω0,
1 − Eλ(ϕ) ifλ ∈ ΩA,

Let C be the class of sets C ⊆ X that are (i) monotone decreasing and (ii) closed and convex in X . Then let

Φ = {ϕ | ϕ = 1 − IC , C ∈ C}

and
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Φ̄ = {ϕ̄ | ϕ̄ = ϕ a.e. [µ], ϕ ∈ Φ}

where IB is the indicator function of the set B ⊆ X , and µ is Lebesgue measure on X .

The following theorem holds. The proof follows from Marden’s proof of his Theorem 2.1 with slight modi-
fications. We follow Marden’s division of the proof into two parts: Part I, which shows that Φ̄ is complete;
and Part II, which shows that all ϕ ∈ Φ are admissible.

Theorem 2.1 (Complete class for truncated noncentral χ2). Ψ̄ is a minimal complete class for of tests for
meta-analytic combinations χ2

νi
(λi, tα) test statistics truncated below at tα.

Proof. Let Rλ(x) denote the likelihood ratio for testing the null hypothesis that all λi = 0.

Rλ(x) =
K∏

i=1

gλ(xi; νi)
g0(xi; νi)

=
K∏

i=1

1 − F0(tα; νi)
1 − Fλi

(tα; νi)
fλi

(xi; νi)
f0(xi; νi)

= c

K∏
i=1

fλi
(xi; νi)

f0(xi; νi)

= cR′
λ(x)

where c =
∏K

i=1(1 − F0(tα; νi))/(1 − Fλi
(tα; νi)) is a constant with respect to x, and R′

λ(x) is the likelihood
ratio testing the same null hypothesis for nontruncated χ2

ν(λ) values. That is, the likelihood ratios R and
R′ only differ by constant factor.

Part I: Φ̄ is complete. Marden (1982; Theorem 2.1, p. 270) showed that R′ is convex and monotone in x.
Hence R is also convex and monotone in x. By Eaton [1970], Theorem 3.1, tests with acceptance regions in
C and their limits form a complete class.

Part II: All ϕ ∈ Φ are admissible. Suppose that ϕ and ψ are two test functions. Following Marden, define
D(B) to be the set of all test functions ϕ such that ϕ = 1 a.e. on Bc for a set B. Due to the proportionality
of likelihood ratios, Marden’s Lemma 2.2 applies, which states that if C ∈ C, ϕ ∈ D(C) and ψ /∈ D(C), then
there exists λ ∈ ΩA such that rλ(ϕ) < rλ(ψ). If E0(ϕ) = E0(ψ) (both tests have the same Type I error
rate) and µ({ϕ ̸= ψ}) > 0 (they are not essentially the same test), there is some λ where ϕ dominates ψ.
Therefore, ϕ is admissible.

Proof that test EV ∗ is inadmissible with noncentral χ2 test statistics immediately follows, since it obviously
has nonconvex acceptance regions in x. We now prove the admissibility of test EV . We use Marden’s proof
of the admissibility of the same test with nontruncated test statistics.

Theorem 2.2 (Admissibility of test EV , truncated noncentral χ2). Test EV is an admissible test when
used to combine truncated noncentral χ2

λ(ν, tα) test statistics.

Proof. The test statistic for test EV is

∑
i

log pe,i =
∑

i

log(pi/αpc)

=
∑

i

log pi −K log(αpc).
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But this is simply the test statistic when combining nontruncated random variables, plus a constant. The
borders of the acceptance region must therefore be identical within the [tα,∞)K space. Marden (1982) shows
that the acceptance region with nontruncated χ2 test statistics is convex and monotone (p. 271); therefore,
the truncated version of the test must also have convex and monotone acceptance regions. By Theorem 2.1,
the test is admissible.

2.2 Noncentral F

Marden (1982) gives separate necessary and sufficient conditions for the admissibility of tests combining
noncentral F statistics. We restate them here because we will use them to prove results about truncated F
test statistics. Let

y =
ν1
ν2
F

1 + ν1
ν2
F
,

y∗ = yr

where F is an F test statistic with ν1, ν2 degrees of freedom, and r is a constant function of ν1 and ν2
given in Marden (1982, p. 272, 4.2; see also Marden & Perlman, 1982). Note that y has a Beta(ν1/2, ν2/2)
distribution when λ = 0. Marden showed that convexity of the acceptance region in y is a sufficient condition
for admissibility, and convexity of the acceptance region in y∗ is a necessary condition.

Marden showed that combining F statistics with logarithms when ν1 ≥ 2 leads to an admissible test (p. 272)
by showing that the acceptance region is convex in y. By the same argument as in Theorem~2.2 above, test
EV is also admissible when ν1 ≥ 2.

Marden also shows that if ν1 = 1 for at least one of the test statistics, the test is inadmissible. A similar
argument to Theorem 2.2 and the continuity of u can be used to show that for some αpc < 1, test EV is
inadmissible when ν1 = 1. It is an open question whether there are values of αpc and ν2 that will yield
admissible EV tests when some ν1 = 1.

Theorem 2.3 (Inadmissibility of test EV ∗, noncentral F ). Test EV ∗ is an inadmissible test when used to
combine K > 2 truncated noncentral F test statistics.

Proof. By the same argument in 2.1, the likelihood ratio for truncated F statistics is proportional to that
for nontruncated F test statistics. Marden (1982) shows that the acceptance region formed by the likelihood
ratio contours will be convex and monotone in y∗. Hence, if a test does not have a convex acceptance region
in y∗, it cannot correspond to a Bayes rule and cannot be admissible by Wald’s (1950) theorem.

It remains to be shown that the acceptance region for test EV ∗ is nonconvex. Let u be the function used to
transform the test statistic for combination by summing such that the test is equivalent to

∑
i u(y∗

i ) > c (i.e.,
in this case u(y∗) = −Φ−1(p((y∗)1/r)) where p is the function yielding the p value for y. Marden (1982, p.
274) shows that when K > 2 a necessary condition for convexity is that for all pairs of statistics yk, yℓ, k ̸= ℓ
on the boundary of the acceptance region,

u′′
k (y∗

k) / (u′
k (y∗

k))2 + u′′
ℓ (y∗

ℓ ) / (u′
ℓ (y∗

ℓ ))2 ≥ 0, (1)

For one of these terms we take the limit as y → t+α . For any y1 as small as we like, we can choose y∗
2 , . . . , y

∗
K

such that these points lie on the boundary of the acceptance region:

lim
y→t+

α

u′′ (y∗)
(u′ (y∗))2 = lim

y→t+
α

Φ′ (
Φ−1(p(y))

)
t(y, r)

h(y)/αpc
− 1 = −1, tα > 0.
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where h is the density function of the Beta(ν1/2, ν2/2) distribution, and t is as defined by Marden (1982, p.
274):

t(y, s; ν1, ν2) ≡ t(y, s) = [(ν1/2 − s)(1 − y) − (ν2/2 − 1)y]y−1(1 − y)−1

which is h′(y)/h(y) − (s− 1)y−1.

Expression 1 will be negative as yk and yℓ become arbitrarily small. Hence, the acceptance region must be
nonconvex in y∗ and test EV ∗ is inadmissible.

3 Power implications for combining F (1, ν2) statistics

We can demonstrate some dramatic power implications when combining F statistics using the P -curve tests
by comparing both EV and EV ∗ to an admissible test that rejects when

∑K
i Fi > c (Marden, 1982, p. 269).

Figure S1 shows the power of three tests on F (1, 19) test statistics: the probit EV ∗, the log EV , and a test
based on the sum of the F statistics.1 Similarly as with χ2

1 statistics, the probit transformation suffers most
when some of the noncentrality parameters are nonzero, and others are 0. Unlike with the χ2

1 statistics,
though, the sum test outperforms the logarithmic EV test, because the log transformation is not well-suited
to the F test statistic like it is to the χ2

1.
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Figure S1: Power of tests EV, EV* on F (1, 19) statistics, and a test based on the sum of the F values. A:
K − 1 studies have λ = 0, and 1 study has λ = 36. B: K − 4 studies have λ = 0, and 4 studies have λ = 16.

1The sum is weighted by the degrees of freedom, if they vary; see Marden, 1982, Eq. 1.16 and 1.19.

5



4 Tables of values used in figures

These numbers have been rounded to three digits.

The following values were used to construct Figure 5A and 5B in the main manuscript. The set of test
statistics used to create the figure was the values below plus one (Figure 5A) or two (Figure 5B) values that
were added to the set.

{3.886, 3.933, 3.983, 4.036, 5.104, 5.418, 5.762, 6.144,
6.572, 7.061, 7.633, 8.325, 9.205, 10.424, 12.461}

5 Demonstration of nonmonotonicity of test EV

In the main manuscript we demonstrated that the compound decision rule proposed by Simonsohn et
al. (2015) leads to a nonmonotone decisions: as the evidence is increased, one can move from rejecting
to nonrejection of the null hypothesis.

The following values were used to construct the figures in this section. The set of test statistics used to
create the figure was the values below plus one (Figure S2A) or two (Figure S2B) values that were added to
the set.

{4.264, 4.727, 5.241, 5.821, 6.492, 7.294, 8.302, 9.681,
11.951}

We followed the same methods described in the main manuscript, adding a single test statistic (Figure S2A)
or two test statistics (Figure S2B) to the set.

As with the probit combination method, increasing a test statistic can cause the test result to move from
rejection to nonrejection and back to rejection again, showing that the decision procedure is nonmonotone.

6 Tests LS and LS∗

Test LS was suggested by Simonsohn et al. [2014] as a means of testing for “left skew,” a “lack of evidential
value,” and “intense p hacking” (p. 539-540). From the previous exposition, it should be obvious that the
test is not a test of skew. It also cannot be a test of “evidential value” — at least, not in the same sense as
EV — because like LEV , test LS will have overlapping rejection regions, and hence the same set can both
have evidential value and lack evidential value under their interpretation of evidential value.

Test LS is better understood as a test of model fit. Under the assumptions of Simonsohn et al. [2014] there
is a family of possible distributions, all of which produce p value distributions that are either uniform or are
stochastically dominated by a uniform. Test LS is statistically significant when −2

∑k
i log(1 − pi) is much

larger than expected under any possible combination of effect sizes.

Interestingly, test LS∗ does not appear in Simonsohn et al. [2015], where tests EV ∗ and LEV ∗ were in-
troduced. Simonsohn et al. have also removed LS/LS∗ from their online app without stating why; when
asked, Simonsohn stated via email that “[t]he reasoning [for eliminating test LS*] was that testing ‘whether’
there is selective reporting seemed silly,” because “of course there is selective reporting,” and that it does
not detect widespread forms of “p-hacking” [Simonsohn, 2024].

Despite the fact that test LS∗ was not described by Simonsohn et al. (2014), it is easy to compute. Due to
the symmetry of the normal, p∗

ℓ,· = 1 − p∗
e,·, so the p value may be inferred from their app results. In none
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of the 270 P -curve analyses we harvested from the literature was p∗
e,· large enough to yield a significant test

LS∗ (that is, p∗
e,· > .95). If LS∗ is, in fact, a test of selective reporting and selective reporting is everywhere,

LS∗ test does not appear to be very sensitive to whatever levels of selective reporting exist.

Because test LS and LS∗ can be thought of as tests LEV and LEV ∗ but calibrated to λ = 0 instead of
λ = 2.34, they will share many of the same properties. We therefore omit lengthy discussion of the specific
properties of these two tests. However, it is worth reiterating that these tests remain extremely sensitive to
values near the significance criterion. If we interpret test LS and LS∗ as “pure” tests of model fit, then this
sensitivity should lead us to search for alternatives that are not affected by sensitivity. In fact, there is an
obvious one, and we can use test EV ’s p value to construct it: 1−pe,· (i.e., reject when pe,· is large, not small;
we can call this test EV −). This test will reject only when the p values in the set are consistently higher
than expected, because p values near the boundary are mapped to −2 log(1) = 0 by the transformation.

If tests LS, LS∗, and EV − are tests of model misfit, what might be the cause of such misfit? “Intense p-
hacking” is Simonsohn et al’s explanation, but other explanations are possible. Others include conservative
tests (which generate larger p values, on average, than a uniform when effect sizes are small); conservative
behaviour [Erdfelder and Heck, 2019]; and selection effects in gathering the studies (e.g., including a large p
value that made one initially suspicious in the P -curve analysis).

The p values gathered in a meta-analysis are never generated from a stochastic process; they were generated
by a complex and convoluted human process that meanders through write-up, publication, and a search then
selection by meta-analysts. If the statistical model underlying the P -curve were to misfit, any one of these
might be the cause. We should be careful not to let our limited imagination of possible explanations keep us
from being conservative about interpreting misfits.

Of all tests, we regard EV − as being potentially the most interesting, at least if it is carefully interpreted.
As we have noted, the hypotheses underlying EV/LEV and EV ∗/LEV ∗ are not terribly interesting; on the
other hand, the particular kinds of misfit identified by tests EV − may be.

7 Consistency of “power” estimate with no variability in noncen-
trality parameter

Let xi (i = 1, . . . ,K) be a sample from a left-truncated continuous random variable with noncentrality
parameter λ whose untruncated CDF is given by Fλ and the left-truncation point is tα. Let

H(ℓ; x) = 1
K

K∑
i=1

W−1
(
Fℓ(xi) − Fℓ(tα)

1 − Fℓ(tα)

)
where F is the CDF of the untruncated test statistic for a noncentrality parameter ℓ and W is a CDF of
an arbitrary continuous distribution w whose mean and variance are denoted µ and σ2. If w is a standard
normal and W−1 ≡ Φ−1, then H is the probit transformed CDF of the truncated test statistic as used in test
LEV ∗. It is obvious that E [H(λ;xi)] = µ and V [H(λ;xi)] = σ2/K; hence an application of Chebyshev’s
inequality shows that

Pr (|H(λ; x) − µ| > ϵ) → 0.

for any ϵ > 0 as K → ∞.

Let λ∗ be the P -curve estimate of the noncentrality parameter; that is, the value such that

1
K

K∑
i=1

W−1
(
Fλ∗(xi) − Fλ∗(tα)

1 − Fλ∗(tα)

)
= µ.

Then
Pr (|H(λ; x) −H(λ∗; x)| > ϵ) → 0.

8



Since H is continuous, this implies that

Pr (|λ− λ∗| > ϵ) → 0

by the continuous mapping theorem. Hence λ∗ is a consistent estimator of λ, and 1 −Fλ∗(tα) is a consistent
estimator of 1 − Fλ(tα).

The consistency of the P -curve “power estimate” when there is no variability in the noncentrality parameter
is a special case of the above when W−1 ≡ Φ−1.
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