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Good metrics are well-defined formulae (often involving averaging) that transmute multiple measures of raw
numerical performance (e.g., dollar sales, referrals, number of customers) to create informative summary

statistics (e.g., average share of wallet, average customer tenure). Despite myriad uses (benchmarking, monitor-
ing, allocating resources, diagnosing problems, explanatory variables), most uses require metrics that contain
information summarizing multiple observations. On this criterion, we show empirically (with people data) that
although averaging has remarkable theoretical properties, supposedly inferior nonaveraging metrics (e.g., maxi-
mum, variance) are often better. We explain theoretically (with exact proofs) and numerically (with simulations)
when and why. For example, when the environment causes a correlation between observed sample sizes (e.g.,
number of past purchases, projects, observations) and latent underlying parameters (e.g., the likelihood of favor-
able outcomes), the maximum statistic is a better metric than the mean. We refer to this environmental effect
as the Muth effect, which occurs when rational markets provide more opportunities (i.e., more observations)
to individuals and organizations with greater innate ability. Moreover, when environments are adverse (e.g.,
failure-rich), nonaveraging metrics correctly overweight favorable outcomes. We refer to this environmental
effect as the Anna Karenina effect, which occurs when less-favorable outcomes convey less information. These
environmental effects impact metric construction, selection, and employment.
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1. Our Objectives
Metrics are widely used by both practitioners and
academics (Gupta et al. 2004, Gupta and Zeithaml
2006). Unlike models, metrics are well-defined formu-
lae (often involving averaging) that transmute multi-
ple measures of raw numerical performance to create
informative summary statistics. For example, typical
marketing metrics create informative firm-level sum-
mary statistics (e.g., average share of wallet, average
attrition rate, average customer tenure, average seg-
ment share, average preference share, average time to
market, average customer retention, average market
penetration, average percent awareness, average dis-
tribution intensity) from raw performance measures
(dollar sales, time to market, number of customers)
using well-defined undisputed formulae. Hence, met-
rics summarize data consisting of observations on
some units (individuals, firms, customers), with mul-
tiple observations per unit (earnings, citations, refer-
rals, dividends, wins).
Metrics have many uses. Sometimes, metrics are

explanatory variables in comprehensive and diverse
quantitative models (Hauser 1998, 2001; Cohen et al.
2000; Rust et al. 2004). Other times, we use metrics

for benchmarking, monitoring, improving processes,
selecting options, creating accountability, allocating
resources, diagnosing problems, and so on. For exam-
ple, we might evaluate cars with an objective reli-
ability metric intending to capture information on
relative durability, quality, expected customer satis-
faction, and brand reputation. Good metrics should
capture the information in multiple observations,
i.e., explain variance across observations. For exam-
ple, when assessing people, metrics computed using
observed past performance should explain variance
in performance across people. That information has
many uses. For example, we can use good people
metrics (e.g., Scholastic Assessment Test scores) to
select people (e.g., admission decisions) and to pre-
dict individual future outcomes (e.g., college grades,
starting salaries).
No prior research has developed the necessary the-

ory for constructing, selecting, and employing met-
rics, particularly for nonaveraging metrics. We do
that. Our theory predicts when particular metrics are
superior. Moreover, we provide empirical evidence to
support our theory. Finally, despite the remarkable
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properties of ubiquitous averaging statistics, we dis-
cover conditions when supposedly inferior nonaver-
aging statistics are better metrics and argue why most
researchers have underestimated their usefulness.

2. Some Interesting Empirical
Findings

2.1. Measuring the Information in a Metric
Despite the intuitive appeal of proximity, the sta-
tistical yardstick for information is correlation or,
more generally, statistical dependence. Correlation
(i.e., shared variance) measures the information in
one variable about another regardless of the abso-
lute difference (proximity) between the two vari-
ables. For example, although the mean metric might
be proximal to an unknown parameter of inter-
est, proximity fails to guarantee more information.
Only correlation allows prediction of one variable
from another. Averaging appears intuitive, but is
not necessarily related to correlation. Unfortunately,
correlations involve more mathematically complex
expressions than proximity (i.e., bias).

2.2. Averaging and Nonaveraging Metrics
The vast majority of metrics employ some averag-
ing. This tendency and reverence for averaging is
natural given the remarkable properties and the piv-
otal role of the sample mean in the development of
modern statistics (Ostasiewicz and Ostasiewicz 2000).
These properties include being nearly normally dis-
tributed (Gibbons and Chakraborti 2003, p. 2), a con-
sistent estimator, a minimal sufficient statistic (at least
when the variance is known) for the entire nat-
ural exponential family of distributions (e.g., nor-
mal, exponential, gamma, inverse Gaussian, negative
binomial, binominal, logarithmic, Poisson, gamma,
Tweedie, etc.), and being an unbiased estimator of
the population mean (regardless of the distribution or
the sample size). Moreover, regardless of the popu-
lation’s distribution, the sample mean’s distribution
(i.e., the sampling distribution) approaches a normal
distribution as the sample size increases. The sam-
ple mean is the method-of-moments estimator, the
least-squares and maximum-likelihood estimator for
the population mean for the normal distribution and
exponential distribution (Lindsey 1997).
An erroneous reason for preferring averaging met-

rics is the incorrect belief that many nonaveraging
metrics fail to consider all available information. How-
ever, for example, although the maximum appears to
be a single observation, in fact, computing a maximum
requires information from all the observations.
Despite the desirable properties and overwhelm-

ing popularity of averaging statistics as metrics, we
evaluate four nonaveraging statistics: the maximum,

minimum, variance, and count (i.e., number of obser-
vations). Common data consist of a recent outcome
(earnings, citations, referrals, dividends, wins) for a
unit of analysis (firm, author, product) and a back-
ground consisting of multiple past outcomes. Our
unit of analysis is an individual. For example, an indi-
vidual author might have a current publication and a
background consisting of multiple past publications.
We ask which metric best captures the information

in those backgrounds based on how well each metric
explains recent outcomes across people. Beyond peo-
ple, our analysis is relevant for any data containing
multiple observations for each unit of analysis (e.g.,
firms, departments, campaigns, products, cities, areas,
and so on).

2.3. Empirical Findings for Three Industries
We use publicly available people data from three very
different occupations—baseball batters, movie cast
members, and academic authors. Our data capture
different units of analysis (games, movies, articles),
different outcomes (number of hits in a game, box
office, citations), different industries (professional
sports, motion pictures, scholarly publishing), differ-
ent organizations (individual, team, a mixture), dif-
ferent types of activities (athletic, artistic, academic),
different marketing efforts (none, large, intermediate),
and different competition (between batters and pitch-
ers, between studios, between journals).

2.3.1. Baseball. For baseball, outcomes are the
number of hits in each of the 2006 postseason games
played by each St. Louis Cardinals batter, reported
by http://www.mlb.com, the official website of major
league baseball. Our data include 113 hits by the 14 St.
Louis Cardinals batters who could play in any or all
of the 16 postseason games.
We compute the averaging and nonaveraging met-

rics for each individual batter’s background, i.e., hits
in each observed game in the postseason except
the most recent outcome (i.e., the last game), which
becomes our holdout game. Finally, using the holdout
game, we compute the correlation � for each of the
metrics, across all batters. To illustrate, suppose a bat-
ter plays three postseason games with hits of 0, 2,
and 1, respectively. The most recent (holdout) out-
come is 1 hit. For the two background games, with
0 and 3 hits, the metrics for this batter are mean= 1�5,
maximum = 3, minimum= 0, variance= 2�25, and
count = 2. We then compute, across all batters, the
correlation of each batter’s metric with the holdout
outcome (i.e., 1 for this batter). For the mean metric,

�mean

= �14�1�5·1+···�−�1�5+···��1+···��√
�14�1�52+···�−�1�5+···�2��14�12+···�−�1+···�2� �
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where the additional numbers come from other bat-
ters and 14 is the number of St. Louis Cardinals bat-
ters. Larger ��� implies more information (variance
explained) in the metric.

2.3.2. Movies. According to the Internet Movie
Database at http://www.imdb.com, there were 200
unique lead cast members (actors) who had at least
one movie in 2004. We chose 2004 to ensure complete
movie life cycles. For these actors, individual back-
grounds are the total gross revenues (i.e., box office)
for each movie in their career, a total of 2,932 prior
movies. We compute the averaging and nonaveraging
metrics for each actor from all movies made by that
actor (i.e., their background) excluding the holdout
movie. Finally, using the holdout movie, we com-
pute the correlation � for each of the metrics, across
all actors. For example, suppose an actor makes one
$24 million movie in 2000, two $6 million movies
in 2003, and one $30 million movie in 2004. Exclud-
ing the holdout outcome, $30 million, the metrics
using the remaining 3 movies (with $24, $6, $6 box
office) are mean= 12, maximum = 24, minimum= 6,
variance= 72, and count= 3. We then compute, across
all actors, the correlation � of each metric with the
holdout outcome.

2.3.3. Publishing. Authors who publish in schol-
arly journals have backgrounds consisting of observed
citations for each of their past articles. Specifically, we
use the 190 articles published by the University of
Pennsylvania Wharton Marketing Department faculty
in five prestigious journals—Journal of Marketing, Jour-
nal of Marketing Research, Marketing Science, Journal of
Consumer Research, and Management Science through
2000, giving each article an adequate citation window
(Price 1970, Peritz 1982, Stremersch and Verhoef 2005).
Google Scholar (http://scholar.google.com) reveals
each article’s citations and year of publication. We
compute each metric from each faculty member’s
background (i.e., citations for each of their pub-
lished articles except the last article). For example,
suppose a faculty member publishes two articles in
year 1997 (in May and June), one article in 1999,
and one in 2000. Citations are 20, 110, 80, and 108,
respectively. The metrics for this faculty mem-
ber, computed for the 3 background articles (with
20, 100, 80 citations), are mean= 70, maximum= 110,
minimum= 20, variance = 1�400, and count = 3. We
compute, across all faculty members, � for each met-
ric with the holdout observation (108 citations for this
individual).

2.4. Correlations
Table 1 reports each metric’s observed correlation �
computed from background observations with the
holdout observation, for our batters, movie actors,

Table 1 Correlations of Different Metrics with Holdout Outcome

Metric Baseball batters Movie actors Academic authors

Mean 0�55 0�29 0�35
Maximum 0�62 0�39 0�46
Minimum N�A� −0�01 −0�12
Variance 0�57 0�41 0�33
Count 0�44 0�13 0�13

and authors. The next section reveals that most of
these correlations are highly significant and often
much larger than expected given random sampling
variation.

2.5. A Monte Carlo Simulation
Using a standard Monte Carlo Simulation (MCS),
we randomly sample data from a normal distribu-
tion with the observed characteristics in the data
set (i.e., actual observed means and variances). For
the movie data, MCS randomly assigns each actor a
mean from a normal distribution with the same mean
and variance as the observed box-office distribution
in the data set. Using each actor’s assigned mean,
MCS then randomly generates that actor’s outcomes
using a normal distribution and a random error term
(with the observed mean and variance in the data
set). Finally, MCS randomly determines the number
of observations in each actor’s background from a
normal distribution with the mean and variance of
the observed number of observations in the data set.
One hundred replications reveal the sampling distri-
butions for testing purposes. See Table 2.
Unsurprisingly, Table 2 shows that the mean met-

ric’s expected (by chance) and actual observed cor-
relations are similar, i.e., 29%. However, most of
the nonaveraging metrics (maximum, variance, and
count) have dramatically better (at the 0.0000 signif-
icance level) correlations than expected. The mini-
mum is significantly worse. Moreover, although the
nonaveraging metrics should seldom outperform the
mean metric, at least one nonaveraging metric does
outperform in all three different industries. For exam-
ple, we expect (based on simulations) that the max-
imum metric will rarely (6%) outperform the mean
metric. If 6% is typical, there is only a 0�063 or 0.00022

Table 2 Monte Carlo Simulation of Expected Correlations for Different
Metrics for the Movie Data

Actual Actual vs.
correlation Average expected Actual better than Actual best?
(from expected (two-tail mean? (expected (expected

Metric Table 1) correlation p-values) incidence) incidence)

Mean 0�29 0�29 0�8060 N.A. No
Maximum 0�39 0�19 0�0000 Yes (6%) No
Minimum −0�01 0�08 0�0000 No No
Variance 0�41 0�16 0�0000 Yes (8%) Yes (8%)
Count 0�13 −0�00 0�0000 No No
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probability of finding that the maximum metric out-
performs the mean metric in three of three indus-
tries. Still, we find that. In fact, simulations reveal
the mean metric should almost always (92%) outper-
form all of our nonaveraging metrics. If 92% is typi-
cal, the probability that the mean metric will be best
in at least one of the three industries is 1− �1− 0�92�3,
or 0.99949. Still, we do not find that. Moreover, for
the movie data, the maximum metric improves the
squared correlation by 80.1%, i.e., �0�392−0�292�/0�292,
over the mean metric.
Parenthetically, further analysis reveals that trend

in the data fails to explain these findings because
these findings replicate when predicting a randomly
chosen observation (rather than the last) as the hold-
out observation. We now provide a simple theoretical
model that helps explain these surprising empirical
findings.

3. Theoretical Model
We model individuals who each have a background
with possibly multiple observations. As noted earlier,
our model is also appropriate for units of analysis
beyond individuals (e.g., organizations or categories),
where we have possibly multiple observations for
each unit. Each observation j is one of J ≥ 1 possible
outcomes, i.e., j = 0�1�2� � � � � J −1, ordered in increas-
ing favorability. To clarify, we use a running baseball
example. Suppose the most hits in a game for any bat-
ter is 3, then 4 outcomes (j = 0�1�2�3 hits) are possible
and J = 4. Let outcomes j be binomially distributed,
so the probability of observing outcome j is

(
J−1
j

) ·
q
j
t �1 − qt�

J−1−j , where 0< qt < 1 captures a type t
individual’s innate ability (the probability of a hit
when at bat) and t = 1�2� � � � � T denote the differ-
ent types of individuals (e.g., slap hitters, power hit-
ters). Each background consists of n≥ 1 observations,
i.e., n = 1�2� � � � �N , where N is the largest num-
ber of observations in any background. For example,
if the largest number of games played in any bat-
ter’s background is 3, then N = 3, so backgrounds
consist of n= 1�2� or 3 games. Let n be binomi-
ally distributed, so the probability of observing a
background of n observations is

(
N−1
n−1
)
pn−1t �1− pt�

N−n,
where 0< pt < 1 captures the opportunities for a
type t individual (the probability a batter plays in a
game). Finally, let Rt > 0 denote the fraction of type t
individuals where

∑T
t=1Rt = 1. In sum, we allow for

differences in the following: the number of possible
outcomes (J ), individual types (t), the actual outcome
observed (j), the innate ability of a type t individ-
ual (qt), the number of possible observations in a back-
ground (N ), the actual number of observations in a
background (n), the opportunities of a type t individ-
ual (pt), and the fraction of type t individuals (Rt).

Note that (1) qt , pt , and Rt are not observed, i.e.,
latent; (2) N ≥ 1 because n ≥ 1; (3) the duration
between background observations could vary, e.g.,
actors could have three movies in one year and a
fourth movie two years later; and (4) we restrict the
duration window for the computation (e.g., obser-
vations during a two-year period) so that individu-
als retain the same type. This restriction allows the
metric to capture differences across individuals rather
than changes within individuals, e.g., innate abilities.
However, we advocate moving duration windows.
For example, with nine years of data, we could com-
pute the maximum metric using seven moving three-
year windows to capture potential changes within
individuals or other units of analysis.

3.1. Specific Cases
We begin by providing specific conditions when
nonaveraging metrics outperform averaging metrics.
These specific conditions will inspire more general
intuition associated with the more general, albeit
more complex, conditions derived in subsequent
sections.
Consider the case of 2 possible outcomes (J = 2)

called F and S, where F < S. As proved later, our
two-outcome analysis is independent of the units of S
and F because covariance is bilinear, making our cor-
relations unitless. For example, if F = �1 for outcomes
under $X and S = �1+�2 for outcomes over $X, then
our equations are exact for any arbitrary constants
�1��2 > 0. Let the population be equally divided
between two individual types where q1 = 1/4 and
q2 = 3/4 are the probabilities of outcome S for indi-
vidual types 1 and 2, respectively. Backgrounds have
1 or 2 observations, i.e., N = 2. Let p1 and p2 be the
probabilities of a background having two background
observations (versus one) for individual types 1 and 2,
respectively. We compare �2, the squared correla-
tion of the metric with the holdout observation, for
the mean metric (given its prevalence and remark-
able statistical properties) with the �2 for the maxi-
mum metric (an exemplar of nonaveraging metrics).
Remember, however, the mean metric’s reputation
involves proximity rather than correlation.
For the mean metric, as shown later (Table 4),

�2mean = 1/�16− 3p1 − 3p2� and �2max = �3p1 − 3p2 − 8�2/
�4�16 + 3p1 + 3p2��16 − 3p1 − 3p2�� for the maximum
metric, so ��2mean − �2max�/�

2
max = �20p1 − 12p2 + 6p1p2 −

3p21 − 3p22�/��8− 3p1+ 3p2�2/3�= Q. Note that Q is
independent of the units of S and F . We now prove
that the maximum metric outperforms the mean met-
ric (i.e., �2max > �2mean) when p1 < p∗1, where p∗1 = p2 +
��10 − 2√25+ 6p2�/3�. The proof follows: (1) �2max >
�2mean, if and only if the numerator of Q< 0. (2) There
is only one admissible p1 making the numerator zero,
i.e., p1 = p∗1, because 0< pt < 1. (3) The first derivative
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of the numerator with respect to p1 is positive,
i.e., 20− 6p1+ 6p2 > 0. (4) Therefore, the numerator
is strictly increasing in p1, decreasing in p2 (with
analogous reasoning), p∗1 is the only solution, and
p1 < p∗1 implies �

2
max >�2mean.

Unlike traditional statistical analysis, our under-
lying parameters influence the sample size, so the
sample size conveys information about qt . The num-
ber of observations in an individual’s background n
could, for example, convey information about that
individual’s innate ability. The number of observed
new products from a firm might convey information
about the management’s ability to innovate. Similarly
the number of brands in a product category might
convey information about the category’s potential. In
each case, nonaveraging metrics better capture this
information.
However, even when the sample size n is inde-

pendent of the likelihood of favorable outcomes or
type (e.g., p1 = p2), the maximum metric can still
outperform the mean metric. We prove this propo-
sition with a simple example. Suppose that for both
individual types, there is an equal likelihood of F
and S, i.e., p1 = p2 = 1/2. If q1 is slightly less than q2,
say, q1 = q2− 0�01, then we can derive �2mean − �2max.
We find that �2mean − �2max is increasing in q2 within
the admissible region and zero at q∗2 = 0�21. Hence,
for q1 < q2 < q∗2 , the maximum metric outperforms the
mean metric when types are equally frequent.
Traditional statistical analysis fails to recognize the

nature of the environment. When we know that S
is rare (e.g., q1 < 0�2� q2 < 0�21), then we use that
knowledge to better summarize that information with
a nonaveraging metric. When record albums, for
example, reach the very rare RIAA certification of
diamond, that certification conveys a great deal of
information about the artist’s innate ability with-
out knowledge of that artist’s other outcomes. The
rare blockbuster drug (>$1 billion) might provide
important information about the parent pharmaceu-
tical company’s innate ability regardless of possible
failures. Similarly, a Clio award provides information
about an ad agency’s innate ability. The maximum
metric recognizes these important signals within a
noisy failure-rich environment.

3.2. The State Space
The last section provided two specific cases. One case
had specific probabilities for different outcomes, but
general probabilities for observing different sample
sizes (i.e., more observations in a background). The
other case had specific probabilities for different sam-
ple sizes, but general probabilities for different out-
comes. We now consider general probabilities for both
sample sizes and outcomes. Our subsequent theo-
rems reveal that two individual types are sufficient to

reveal general reasons when and why different met-
rics perform better. Our theorems also show that two
possible outcomes (e.g., less than X and greater than
X) are sufficient to produce all of our key findings
regarding why and when particular metrics are better.
Our findings reveal both intuition and testable pre-
dictions applicable to many situations. Nevertheless,
we later explore generality through simulations.
We now explain how to compute �2 for different

metrics. Although we are concerned with individual
metrics, our analysis must define the state space of
observations by the possible joint events consisting
of a background (one or two observations) and hold-
out outcome for a particular type of individual. With
J = 2, N = 2, and T = 2, Table 3 provides the 24 pos-
sible joint events. Remember, q1 and q2 are the prob-
ability of an S outcome (versus an F outcome) for
type 1 and type 2 individuals, respectively. Moreover,
p1 and p2 are the probability of a background having
two observations (versus one observation) for type 1
and type 2 individuals, respectively. Finally, R1 and
R2 = 1−R1 are the fraction of type 1 and type 2 indi-
viduals, respectively. Note that q1 �= q2 so that differ-
ent types have different probabilities of an S outcome.
Table 3 provides the probability of observing each of
the 24 joint events. Here are some clarifying compu-
tational specifics for several rows in Table 3.
Row 1 �Event 1�. Event 1 is a type 1 individual with

a background of one observation S and a holdout
outcome S. This event’s probability is the probabil-
ity the individual is type 1 (R1) times the probabil-
ity of having one background observation �1 − p1�
times the probability that observation is an S outcome
(q1) times the probability the holdout observation is
an S outcome (q1), so the probability of event 1 is
R1�1− p1�q1q1.
Row 10 �Event 10�. Event 10 is a type 1 individ-

ual with a background of two observed outcomes
(S and F ) and a holdout outcome F . This event’s
probability is the probability the individual is type 1
(R1) times the probability of having two background
observations p1 times the probability those observa-
tions are S and F outcomes (q1�1 − q1�) times the
probability the holdout observation is an F out-
come (1 − q1), so the probability of event 10 is
R1p1q1�1− q1��1− q1�.
Row 17 �Event 17�. Event 17 is a type 2 individual

with a background of two outcomes (F and S) and
a holdout outcome S. This event’s probability is the
probability the individual is type 2 (1−R1) times the
probability of having two background observations p2
times the probability those observations are F and S
outcomes (�1−q2�q2) times the probability the holdout
observation is an S outcome (q2), so, the probability
of event 17 is �1−R1�p2�1− q2�q2q2.
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Table 3 Events, Likelihoods, and Computation of Metrics

Holdout
Event Type Background Mean Maximum Minimum Variance Count outcome Probability (Pevent)

1 1 �S� S S S 0 1 S R1�1− p1	q1q1

2 1 �F � F F F 0 1 S R1�1− p1	�1− q1	q1

3 1 �S�S� �S+S	/2 S S 0 2 S R1p1q1q1q1

4 1 �S� F � �S+ F 	/2 S F �S− F 	2/4 2 S R1p1q1�1− q1	q1

5 1 �F � S� �F +S	/2 S F �S− F 	2/4 2 S R1p1�1− q1	q1q1

6 1 �F � F � �F + F 	/2 F F 0 2 S R1p1�1− q1	�1− q1	q1

7 1 �S� S S S 0 1 F R1�1− p1	q1�1− q1	

8 1 �F � F F F 0 1 F R1�1− p1	�1− q1	�1− q1	

9 1 �S�S� �S+S	/2 S S 0 2 F R1p1q1q1�1− q1	

10 1 �S� F � �S+ F 	/2 S F �S− F 	2/4 2 F R1p1q1�1− q1	�1− q1	

11 1 �F � S� �F +S	/2 S F �S− F 	2/4 2 F R1p1�1− q1	q1�1− q1	

12 1 �F � F � �F + F 	/2 F F 0 2 F R1p1�1− q1	�1− q1	�1− q1	

13 2 �S� S S S 0 1 S �1−R1	�1− p2	q2q2

14 2 �F � F F F 0 1 S �1−R1	�1− p2	�1− q2	q2

15 2 �S�S� �S+S	/2 S S 0 2 S �1−R1	p2q2q2q2

16 2 �S� F � �S+ F 	/2 S F �S− F 	2/4 2 S �1−R1	p2q2�1− q2	q2

17 2 �F � S� �F +S	/2 S F �S− F 	2/4 2 S �1−R1	p2�1− q2	q2q2

18 2 �F � F � �F + F 	/2 F F 0 2 S �1−R1	p2�1− q2	�1− q2	q2

19 2 �S� S S S 0 1 F �1−R1	�1− p2	q2�1− q2	

20 2 �F � F F F 0 1 F �1−R1	�1− p2	�1− q2	�1− q2	

21 2 �S�S� �S+S	/2 S S 0 2 F �1−R1	p2q2q2�1− q2	

22 2 �S� F � �S+ F 	/2 S F �S− F 	2/4 2 F �1−R1	p2q2�1− q2	�1− q2	

23 2 �F � S� �F +S	/2 S F �S− F 	2/4 2 F �1−R1	p2�1− q2	q2�1− q2	

24 2 �F � F � �F + F 	/2 F F 0 2 F �1−R1	p2�1− q2	�1− q2	�1− q2	

Note that, in actual data, some events are indis-
tinguishable because observed outcomes are identi-
cal. Also, the component probabilities for each event
depend on the unobserved individual type. Also, note
that, although these computations are for indepen-
dent events, many forms of dependency (e.g., upward
and toward trends) would only strengthen our results
and favor nonaveraging metrics. We now compute the
different metrics.

3.3. Computing the Metrics
Using the event probabilities in Table 3, we compute
each metric across all 24 events assuming (without
loss in generality) that F < S. For example, event 1
consists of a background of S. Therefore, the mean
metric is S, the count metric is 1, the maximum metric
is S, and so on. For event 16, with background �S� F �,
the mean metric is �S + F �/2, the maximum metric
is S, the minimum metric is F , the variance metric is
�S − F �2/4, and the count metric is 2. Here, bilinear
covariances make our analysis independent of the units
of F and S.

3.4. Deriving the Squared Correlations for
Each Metric

This section shows how to compute the correlation
�2mean between the mean metric and the holdout out-
come. Analogous steps produce �2max, �2variance, and
�2count. Let E�·� denote the expectations operator, i.e.,
the expected value of a metric across all events. Then,

�2metric

=
(

E�metric×outcome�−E�metric�E�outcome�√
E�metric2�−E�metric�2√E�outcome2�−E�outcome�2

)2
�

We now compute each term in �2mean. The expected
mean metric follows. See column 4 in Table 3.

E�mean metric�

= P1S+ P2F + P3

(
S+ S

2

)
+ P4

(
S+ F

2

)
+ P5

(
F + S

2

)

+ P6

(
F + F

2

)
+ P7S+ P8F + P9

(
S+ S

2

)
+ · · · �
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Note that P1�P2�P3� � � � are the event probabilities in
the last column of Table 3. We can also compute the
expected squared mean metric across all events.

E�(mean metric)2�

= P1S
2+ P2F

2+ P3

(
S+ S

2

)2
+ P4

(
S+ F

2

)2

+ P5

(
F + S

2

)2
+ P6

(
F + F

2

)2
+ P7S

2+ P8F
2+ · · · �

Next, compute the expected cross products of the
mean metric with the holdout outcome (columns 4
and 9 in Table 3).

E�(mean metric) · outcome�
= P1SS+ P2F S+ P3

(
S+ S

2

)
S+ P4

(
S+ F

2

)
S

+ P5

(
F + S

2

)
S+ P6

(
F + F

2

)
S+ P7SF + P8F F + · · · �

Let A=R1q1+ �1−R1�q2 denote the expected prob-
ability of an S outcome for a randomly chosen indi-
vidual. Substituting all of these terms into �2mean yields
the following equation for the squared correlation
between the mean metric and the holdout outcome.
Note that �2mean is independent of the specific values
of S and F .

�2mean =
(
2�A− q2�

2�A− q1�
2�q2− q1�

)
· (A�1−A��q1q2�p2− p1�+ 2A�1−A��q2− q1�

− �A+ q1q2��p2q2− p1q1�+A�p2q
2
2 − p1q

2
1��
)−1

�

Following these steps for each metric yields the
squared correlations shown in Table 4.

Table 4 Squared Correlation of Different Metrics with Holdout Outcome ��2	

�2mean =
2�A− q2	

2�A− q1	
2�q2 − q1	

AĀ
(
q1q2�p2 − p1	+ 2AĀ�q2 − q1	− �A+ q1q2	�p2q2 − p1q1	+A�p2q

2
2 − p1q

2
1 	
)

�2max=
(
�A−q2	

2�A−q1	
2��q2−q1	+�p2q2−p1q1	−�p2q

2
2 −p1q

2
1
		2
)

(
AĀ
(
q1q2�p2−p1	+Ā�q2−q1	−�A+q1q2	�p2q2−p1q1	+A�p2q

2
2 −p1q

2
1 	
)(−q1q2�p2−p1	+A�q2−q1	+�A+q1q2	�p2q2−p1q1	−A�p2q

2
2 −p1q

2
1 	
))

�2min=
(
�A−q2	

2�A−q1	
2��q2−q1	−�p2q2−p1q1	+�p2q

2
2 −p1q

2
1 		

2
)

(
AĀ
(
q1q2�p2−p1	−Ā�q2−q1	−�A+q1q2	�p2q2−p1q1	+A�p2q

2
2 −p1q

2
1 	
)(−q1q2�p2−p1	−A�q2−q1	+�A+q1q2	�p2q2−p1q1	−A�p2q

2
2 −p1q

2
1 	
))

�2variance =
(
�A− q2	

2�A− q1	
2��p2q2 − p1q1	− �p2q

2
2 − p1q

2
1
		2
)

(
AĀ
(
2q1q2�p2 − p1	+ �q2 − q1	− 2�A+ q1q2	�p2q2 − p1q1	+ 2A�p2q22 − p1q

2
1 	
)(−q1q2�p2 − p1	+ �A+ q1q2	�p2q2 − p1q1	−A�p2q

2
2 − p1q

2
1 	
))

�2count =
�A− q2	

2�A− q1	
2�p2 − p1	

2

AĀ
(
A�p2 − p1	− �p2q1 − p1q2	

)(−A�p2 − p1	+ �q2 − q1	+ �p2q1 − p1q2	
)

Where A= R1q1 + �1−R1	q2, Ā= 1−A

3.5. Findings
The correlations in Table 4 quantify the amount of
information each metric contains by computing how
much variance each metric explains across individ-
uals (or other units of analysis). Consequently, the
correlations also quantify each metric’s ability to pre-
dict the holdout outcomes for each individual. Know-
ing that allows us to construct and evaluate how
well various metrics will perform in different environ-
ments regardless of their use (e.g., decision making,
diagnosing, monitoring, evaluating, forecasting, esti-
mating, etc.).
Table 4 reveals necessary and sufficient conditions

when any metric outperforms any other metric (e.g.,
specific parameter values when each metric is best).
Although specific values are latent, knowledge about
the nature of the environment might still reveal when
particular metrics should do well. The following the-
orems provide sufficient conditions in a form that
reveals general qualitative insights linked to the envi-
ronment. Our theorems compare the �2 for each non-
averaging metric with the �2mean for the mean metric
to reveal when known environments (e.g., efficient,
adverse, etc.) favor nonaveraging metrics over the
mean metric. Although the mean metric is our bench-
mark for reasons noted earlier, additional compar-
isons are doable and might produce insightful future
research.

Theorem 1. The maximum metric contains more infor-
mation than the mean metric ��2max >�2mean� when

p2 > 1− q1 > 1− q2 > p1

�the Muth environmental effect� (1)

or
1− p1
4

= 1− p2
4

> q2 > q1

�the Anna Karenina environmental effect�� (2)

See the appendix for the proof.
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The conditions in Theorem 1 reveal when and
why the maximum metric conveys more informa-
tion than the mean metric. Condition (1) holds when
the environment provides a sufficiently positive rela-
tionship between pt and qt , so that individuals with
greater innate ability (i.e., a greater likelihood of more
favorable outcomes) tend to have a greater num-
ber of observed outcomes in their background. Con-
versely, less innate ability (smaller qt) tends toward
fewer observations (smaller pt). Hence, the number
of observed outcomes conveys information about
underlying parameters (e.g., the individual’s latent
innate ability). Many efficient environments tend to
satisfy this condition (1) because of what we refer to
as the Muth effect, i.e., rational markets do not waste
information as argued by the eminent economist and
the father of rational expectations John F. Muth (Muth
1961). Here, by using all available information, ratio-
nal market environments efficiently recognize higher
innate ability individuals (or organizations or cate-
gories) and reward them with more opportunities.
Of course, beyond our Muth reasoning, other environ-
mental forces might magnify this relationship, ensur-
ing that condition (1) is met.
Statistical theory virtually ignores this situation

because most statistical procedures assume either that
exogenous sample sizes are fixed or that sample
sizes only reflect issues related to accuracy. Hence,
by assumption, sample sizes contain no information.
Despite that tradition, samples sizes do reveal infor-
mation. For example, product categories with more
products usually differ from those with fewer prod-
ucts. Product categories with more price promotions
usually differ from those with fewer price promo-
tions. Hence, the number of observations is revealing.
Now consider why the maximummetric can exploit

information in the number of observations whereas
the mean metric cannot. The reason is that the dis-
tribution of the maximum statistic depends on the
number of observations, whereas the mean does not.
As the sample size increases, the expected value of
the mean remains the same, but the maximum metric
increases because, by definition, the maximum metric
is the most favorable observation. For example, when
we go from 1 to 2 to 3 to 4 observations, the probabil-
ity of observing the most favorable outcome increases
from 1 − �1 − qt�

1 to 1 − �1 − qt�
2 to 1− �1− qt�

3 to
1− �1− qt�

4. When qt = 10%, this probability increases
from 10% to 19% to 27% to 34%. In general, the
expected value of the maximum metric captures sam-
ple size information, whereas the mean metric does
not. However, in our situation, the mean metric dis-
plays a small positive correlation with sample size
because the mean of larger samples is slightly larger
when larger samples contain more type 2 individuals.
Note that in actual applications the maximum metric

can increase and decrease when we employ a moving
duration window. For example, with eight years of
data, we could compute the maximum metric for six
three-year moving windows.
Condition (2) remarkably reveals that the maxi-

mum metric can outperform the mean metric even
when the Muth effect is entirely absent, and sam-
ple size is unrelated to the underlying latent abil-
ity (i.e., p1 = p2). This condition’s key feature is the
extremely adverse or failure-rich environment, i.e.,
qt < �1− pt�/4. Many market environments might sat-
isfy condition (2) because of the Anna Karenina
(AK) effect (Shugan 2007). The AK effect, an eponym
for the main character and namesake title of Count
Lev Nikolayevich Tolstoy’s famous novel (Tolstoy
1998), reflects the widely quoted first line of Tol-
stoy’s novel, roughly translated to “Happy families
are all alike; every unhappy family is unhappy in its
own way” (Diamond 1997, p. 157). One implication
is that when passively observing survivors, survivors
show little disparity on the variables necessary for
survival, making these variables appear as constants
(Shugan 2007). Another implication is that favorable
outcomes require every detail to be right, whereas an
unfavorable outcome only requires one wrong detail,
making most environments adverse. Consequently,
favorable outcomes are rare and more informative
than unfavorable outcomes. For example, individuals,
new products, or organizations could fail for many
environmental reasons beyond their control, such as
lack of support, bad timing, incompetent distributors,
unexpected competitive moves, economic turns, new
regulations, or bad luck. In sum, in adverse or failure-
rich environments, failures provide less information
because there are many causes for failure. However,
favorable outcomes often reflect the presence of many
propitious conditions including, for example, a high-
innate-ability individual.
The maximum metric accentuates more favorable

outcomes, whereas the mean metric tempers more
and less favorable outcomes. Accentuating favorable
outcomes allows the maximum metric to exploit the
information in a mixed background (i.e., having both
more- and less-favorable observations) better than
the mean metric. For example, the maximum met-
ric equates an individual with a mixed background
with an individual with only observed favorable out-
comes. Consequently, the maximum metric extracts
more information about outcomes when the like-
lihood of at least one favorable outcome is sen-
sitive to the latent individual type. This situation
occurs in extremely adverse or failure-rich environ-
ments. To understand, let x denote the difference
between the two individual types, i.e., x = q2 − q1.
For two observations, the difference in the probabil-
ity of observing at least one favorable outcome is
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��1− �1− q2�
2��− �1− �1− q1�

2�= x�2− 2q2+ x�, which
is larger for smaller values of q2 holding x constant.
Hence, the maximum metric better distinguishes the
two types when qt is small (i.e., a failure-rich environ-
ment). Parenthetically, the AK effect fosters a failure-
rich environment where successes S are rare and
contain more information as implied by Shannon’s
well-known self-information measure in information
theory (Shannon 1948; Cover and Thomas 1991,
p. 107). The maximum identifies informative signals
within a noisy environment, whereas the mean fails
to discount the noise.
Of course, beyond the AK environment, other

forces might magnify this relationship, ensuring that
condition (2) is met. In sum, either environmental
effect (AK or Muth) can cause the maximum metric
to convey more information about outcomes than the
mean metric. This reasoning for the maximum metric
suggests a symmetric result for the minimum metric.
Theorem 2 confirms that reasoning.

Theorem 2. The minimum metric contains more infor-
mation than the mean metric ��2min >�2mean� when

p1 > q2 > q1 > p2 (3)

or q2 > q1 >
p1+ 3
4

= p2+ 3
4

� (4)

The two conditions in Theorem 2 reveal when and
why the minimum metric conveys more information
than the mean metric. Condition (3) implies a suffi-
ciently negative relationship between pt and qt , i.e.,
individuals with greater innate ability have a smaller
expected number of observations. Hence, there is an
inverse relationship between individual ability (i.e.,
the probability of more favorable outcomes) and the
number of observations (i.e., the sample size). For
example, as we go from 1 to 2 to 3 to 4 observa-
tions, the probability of at least one failure increases
from 1 − qt to 1 − q2t to 1 − q3t to 1− q4t . Conse-
quently, unlike the mean metric, the minimum tends
to decrease as the number of observed outcomes
increases, thereby capturing information in the sam-
ple size. When p1 > q2 > q1 > p2, the increased sam-
ple size also captures decreased latent innate ability.
Like the maximum metric, the minimum metric can
increase or decrease when computed over different
time intervals (i.e., a moving window).
Although condition (3) is sufficient, it is unnec-

essary. Minimum metrics can outperform the mean
without sample-size information (i.e., p1 = p2). Con-
dition (4) implies qt > �3+ pt�/4, so the environment
is extremely favorable or success (S) rich. Here, the
minimum metric benefits from unfavorable outcomes
being more informative than favorable outcomes. In
other words, successes are noisy while failures pro-
vide informative signals. Hence, in success-rich envi-
ronments, the minimum metric better distinguishes

latent type than the mean. Incidentally, Theorem 2 fol-
lows from Theorem 1 because (1) �2max evaluated at
q1 = q∗1 and q2 = q∗2 equals �

2
min evaluated at q1 = 1− q∗1

and q2 = 1− q∗2 and (2) �
2
max evaluated at q1 = q∗1 , q2 =

q∗2 , p1 = p∗1, p2 = p∗2 equals �2min evaluated at q1 = q∗2 ,
q2 = q∗1 ,p1 = p∗2, p2 = p∗1 for any q∗1� q

∗
2� p

∗
1� p

∗
2.

Theorem 3 considers the variance metric.

Theorem 3. The variance metric contains more infor-
mation than the mean metric ��2variance >�2mean� when

p2
2

>
1
5
> 2q1 > q2 > q1 = p1� (5)

The condition in Theorem 3 reveals when and why
the variance metric conveys more information than
the mean metric. Unlike the maximum metric, we
can prove that the variance metric never reveals more
information about outcomes than the mean metric
when p2 = p1. Hence, Theorem 3 requires both effects.
First, 1/5 > 2q1 > q2 > q1 = p1 ensures the AK effect,
i.e., q1 and q2 small. Second, condition (5) ensures the
Muth effect, i.e., (p2 > p1� q2 > q1). Finally, the condi-
tion p2 > 2/5 ensures that the probability of observing
multiple outcomes (for type 2 individuals) is suffi-
ciently large to allow the variance metric to extract
information about individual types. Only one obser-
vation yields no variance (i.e., no information in the
metric).

Theorem 4. The count metric contains more informa-
tion than the mean metric ��2count >�2mean� when

p2
2

> q2 > q1 > p1� (6)

The condition in Theorem 4 reveals when and why
the count metric conveys more information than the
mean metric. Theorem 4 reveals that the count met-
ric can explain more information across outcomes
than the mean metric because, unlike the mean, the
count metric exploits information in the sample size.
However, to outperform the mean metric, the count
metric requires the Muth environmental effect, i.e.,
(p2 > p1� q2 > q1). Moreover, the count metric requires
a stronger form of the Muth effect than the maximum
because, unlike the count metric, the maximum met-
ric exploits both the number of observations and their
magnitude. For example, the count metric fails to dis-
tinguish between several favorable outcomes and the
same number of mixed outcomes. The count metric
only exploits the number of observed outcomes in
each background. This finding is consistent with the
count metric’s observed performance in our data.

4. Generalizing via a Numerical
Simulation

To investigate the generality of condition (1), we
examine 10,000 cases. Each case consists of a ran-
dom N distributed between 3 and 10, a random J
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Table 5 Metric Correlations Based on Random Parameters With and Without Condition (1)

Expected Expected correlation Better than mean Best
correlation (condition (1) Better than mean (condition (1) Best (no (condition (1)

Metrics (no restriction) restriction) (no restriction) (%) restriction) (%) restriction) (%) restriction) (%)

Mean 0�27 0�12 N. A. N. A. 82 0
Maximum 0�18 0�22 6 100 3 41
Minimum 0�17 0�03 9 2 4 0
Variance 0�10 0�17 10 47 7 13
Count 0�04 0�21 5 88 4 45

distributed between 3 and 10, and probabilities (qt , pt ,
and Rt) randomly distributed between 0.01 and 0.99.
For each case, we generate a background and hold-
out observations using the binomial distributions
described earlier. We then compute the correlations
for each metric (i.e., between the metric and holdout
observation) for all the cases and, next, for only cases
with parameters satisfying condition (1).
Table 5 provides the results. Table 5 reveals that

the maximum metric outperforms the mean metric
in every case when condition (1) holds. Hence, it is
likely that condition (1) generalizes to N > 2 and J > 2
because we would only expect (with no conditions)
the maximum metric to outperform the mean met-
ric 6% of the time (see Table 5). Finally, Table 5 also
suggests that condition (1) favors the variance and
count metrics, but fails to be sufficient. The count
metric does particularly well because it specifically
isolates the sample size. Of course, simulations only
reveal probabilistic evidence for underlying relation-
ships, whereas our theorems provide exact proofs.

5. Conclusions and Implications
Good metrics are well-defined formulae (often involv-
ing averaging) that transmute multiple measures of
raw numerical performance (e.g., dollar sales, refer-
rals, number of customers) to create informative
summary statistics (e.g., average share of wallet, aver-
age customer tenure). Despite myriad uses (bench-
marking, monitoring, allocating resources, diagnosing
problems, explanatory variables in forecasting mod-
els), most uses require metrics that contain informa-
tion (explained variance) about observed outcomes.
On this criterion, we show empirically (with people
data), theoretically (with exact proofs), and numeri-
cally (with simulations) that, although averaging has
remarkable theoretical properties, supposedly inferior
nonaveraging statistics are often better. We find:
• Good metrics capture information (explained

variance) across observations rather than proxim-
ity (minimal bias). These metrics often become
explanatory variables in formal models that achieve
proximity.
• Empirical analysis of the performance of indi-

viduals (baseball batters, movie actors, and authors)

all reveal that seemingly inferior nonaveraging met-
rics (e.g., the maximum metric) do much better than
expected by chance, and often outperform the mean
metric.
• The Muth effect provides an environmental

explanation—markets provide more opportunities to
people and organizations with greater innate ability
causing larger samples sizes (e.g., number of obser-
vations in individual backgrounds). The implications
are vast. The number of observed new products from
a firm might convey information about the firm’s
innate ability to innovate. The number of brands in
a product category might convey information about
the category potential. Decision makers can exploit
knowledge about their environment by choosing spe-
cific nonaveraging metrics.
• The Anna Karenina (AK) effect is another envi-

ronmental explanations—in adverse environments,
favorable outcomes convey more information than
unfavorable outcomes. Similarly, in propitious envi-
ronments, favorable outcomes convey less informa-
tion. The implications are far-reaching. When record
albums reach the very rare RIAA certification of Dia-
mond, for example, that certification conveys a great
deal of information about the artist’s innate abil-
ity, irrespective of other outcomes. The rare block-
buster drug (>$1 billion) might provide important
information about the parent pharmaceutical com-
pany’s innate ability regardless of other outcomes.
Similarly, a Clio award provides information about an
ad agency’s innate creativity. Nonaveraging metrics
exploit this environment. The maximum metric rec-
ognizes these important observations within a noisy
failure-rich environment. Decision makers can exploit
knowledge about their environment by choosing spe-
cific nonaveraging metrics.
• Specific cases, general theoretical developments

and more general simulations all show that these
environmental effects (Muth and AK) do favor non-
averaging metrics.
Our research provides many practical implications.

First, academics and practitioners should more seri-
ously consider (if not immediately adopt) nonaver-
aging metrics (e.g., the maximum, the top decile,
the bottom quartile, the standard deviation). Sec-
ond, despite traditional statistical theory, empirically
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observed sample sizes (e.g., number of products in
a category, number of returned questionnaires, num-
ber of firms in an industry) might convey important
information about underlying parameters. For exam-
ple, the number of reviews of a product might reflect
the quality of the product. Third, the environment
itself often conveys valuable information. For exam-
ple, we might learn more from surviving firms in hos-
tile environments than from much more successful
firms in friendly environments. Fourth, our findings
might help understand the logic behind some appar-
ent anomalies in consumer behavior involving prema-
ture termination of search, selective perception, repeti-
tion bias, escalation of commitment, and biased recall.
For example, the AK effect explains the famous taxi-
cab problem (Tversky and Kahneman 1982, p. 156).
Respondents might believe that rare events are more
informative (more easily remembered) and conclude
the witness is likely correct because the probabil-
ity of remembering an uncommonly colored taxi is
greater. Fifth, our findings could explain why individ-
uals with one very successful outcome (e.g., a highly
cited article, a blockbuster movie, a creative new strat-
egy) remain coveted despite many subsequent less-
successful outcomes (e.g., articles with less impact,
movies that flop, strategies that fail). For example,
consider Robert L. Nardelli, who had failures after
his success at General Electric, and was still hired as
chairman and chief executive office of Chrysler. Sixth,
in many situations, only nonaveraging data (e.g., the
best, worst, or truncated) are available. For exam-
ple, we might only observe successful products, selec-
tive résumés might only report more favorable accom-
plishments, advertising agencies might only promote
successful ads, and athletic record books report only
the best (e.g., minimum) times. These incomplete data
might still provide adequate information to predict
future outcomes. Seventh, given cross-sectional data
with multiple observations for every unit of analy-
sis (individuals, firms, categories, etc.), we can esti-
mate the relationship between any nonaveraging met-
ric (e.g., maximum, minimum, etc.) with any predicted
outcome (sales, market share, penetration, profits,
etc.) to exploit the desirable properties of nonaverag-
ing metrics in particular environments. For example,
empirical analysis of movie data shows that the max-
imum metric better predicts box-office outcomes than
the mean metric. Eighth, when summarizing the char-
acteristics of a market, nonaveraging metrics (e.g., top
quartile) might contain more information than stan-
dard averaging metrics from accounting. For example,
this is an explanation for the popularity of metrics
such as price to peak earnings and gross positive fair
value. Ninth, unlike models that seek to produce accu-
rate (proximal) forecasts, we should evaluate metrics
on their information content (e.g., variance explained,

statistical dependence) and not necessarily on prox-
imity or bias. For example, the identity of the devel-
oper of a new product might be a better predictor
of success than the average failure rate in the prod-
uct category. Tenth, perhaps the disappointing correla-
tion between market outcomes (e.g., share, sales) and
common marketing metrics (e.g., average customer
satisfaction, average intent to purchase) would be
improved by using nonaveraging metrics. For exam-
ple, the AK effect explains why “top box” is a bet-
ter metric for predicting eventual purchase. Eleventh,
computing nonaveraging metrics from moving dura-
tion windows could capture both intertemporal and
cross-sectional information for the best predictions.
For example, with eight years of data, we could com-
pute the maximum metric for six three-year moving
windows and predict future trends.
Obviously, myriad topics await future research.

Generality could be explored in still more settings.
Theoretical research could compare our nonaverag-
ing metrics and prospect new ones, including combi-
nations of extant metrics. Sufficient conditions could
be weakened. Events could be statistically dependent
(e.g., people could change types).
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Appendix
Proof of Theorem 1. First, we make the following

transformations: q1 = �1 + b�/�1 + a + b�, q2 = �q1 + c�/
�1 + c�, p1 = �d/�1 + d���1 − q1�/�1 + c�, p2 = �1 + a�/
�1 + a + b�, R1 = 1/�1 + R�, where the temporary
constants a� b� c�R> 0 differ for each proof. These
transformations ensure that 1> p2� q2� q1� p1 > 0. Note,
p2+ q1 = ��2+ a+ b�/�1+ a+ b�� > 1⇒ p2 > �1− q1�, q2 =
�q1 + c�/�1 + c� > q1 ⇒ �1− q1� > �1− q2�, and p1 =
�d/�1+ d���1− ��1+ c�q2− c��/�1+ c�= �d/�1+ d���1− q2�⇒
p1 < �1− q2�. Combining these expressions yields
p2 > �1− q1� > �1− q2� > p1. Hence, the transforms enforce
condition (1). Substituting the transforms into the expres-
sion for �2max − �2mean from Table 4 reveals that all the terms
in the resulting expression are positive for a� b� c�d�R > 0,
ergo �2max >�2mean. Q.E.D.
To prove condition (2) is sufficient, make the follow-

ing transforms: q1 = �1− p1�/�4 + b + c�, q2 = �1 − p1�/
�4+ b�, p1 = 1/�1+ a�, p2 = p1, R1 = 1/�1+ R�. These trans-
forms ensure that 1 > q1� q2� p1� p2 > 0 and enforce con-
dition (2), i.e., �1− p1�/4= �1− p2�/4> q2 > q1. Substituting
these transforms into ��2max−�2mean� reveals that all the
resulting terms are positive for a� b� c�R > 0, ergo �2max >
�2mean. Q.E.D.
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Proof of Theorem 2. The transformations q1 = �p2 + c�/
�1 + c�, q2 = �q1 + b�/�1 + b�, p1 = �q2+ a�/�1+ a�,
p2 = 1/�1+ d�, R1 = 1/�1 + R� ensure condition (3) holds,
i.e., p1 > q2 > q1 > p2, and that 1> q1� q2� p1� p2 > 0 for
a� b� c�d�R > 0. Substituting these transforms into
�2min −�2mean from Table 4 reveals that all the resulting terms
are positive for a� b� c�d�R> 0, ergo �2min >�2mean. Q.E.D.
To prove condition (4) is sufficient, substitute q1 = �3+b�/

�4 + b�, q2 = �3+ b+ c�/�4+ b+ c�, p1 = �4q1− 3�/�1+ a�,
p2 = p1, R1 = 1/�1+R� into �2min −�2mean from Table 4. These
transforms ensure that 1 > q1� q2� p1� p2 > 0 and enforce
condition (4). All the resulting terms are positive for
a� b� c�d�R> 0, ergo �2min >�2mean. Q.E.D.

Proof of Theorem 3. The transformations q1 = 1/
�10 + a�, q2 = �cq1 + 2q1�/�1 + c�, p1 = q1, p2 = �2 + d�/
�5 + d�, R1 = 1/�1 + R� ensure 1> q1� q2� p1� p2 > 0 and
enforce sufficient condition (5). Substituting these transfor-
mations into �2variance− �2mean reveals only positive terms for
a� b� c�d�R> 0, ergo �2variance >�2mean. Q.E.D.

Proof of Theorem 4. The following transformations
q1 = q2/�1 + b�, q2 = p2/�2 + a�, p1 = q1/�1 + c�, p2 = 1/
�1 + d�, R1 = 1/�1 + R� ensure 1 > q1� q2� p1� p2 > 0 and
enforce sufficient condition (6). Substituting these trans-
forms into �2count−�2mean in Table 4 reveals that all the result-
ing terms are positive for a� b� c�d�R > 0, ergo �2count >

�2mean. Q.E.D.
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