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Abstract 

In recent years, the replicability of original findings published in psychology journals has been 

questioned.  A key concern is that selection for significance inflates observed effect sizes and 

observed power. If selection bias is severe, replication studies are unlikely to reproduce a 

significant result. We introduce z-curve as a new method that can estimate the average true 

power for sets of studies that are selected for significance. We compare this method with p-

curve, which has been used for the same purpose. Simulation studies show that both methods 

perform well when all studies have the same power, but p-curve overestimates power if power 

varies across studies. Based on these findings, we recommend z-curve to estimate power for sets 

of studies that are heterogeneous and selected for significance.  Application of z-curve to various 

datasets suggests that the average replicability of published results in psychology is 

approximately 50%, but there is substantial heterogeneity and many psychological studies 

remain underpowered and are likely to produce false negative results.  To increase replicability 

and credibility of published results it is important to reduce selection bias and to increase 

statistical power.  

   

Keywords:  Power estimation, Post-hoc power analysis, Publication bias, P-Curve, Z-curve, 

Replicability, Simulation, Meta-Analysis.  

  



Estimating Replicability 3 

 

 

 

Z-Curve:  

A Method for the Estimating Replicability Based on Test Statistics in Original Studies  

 

Until recently, psychologists were confident that published results are replicable. Meta-

analyses typically concluded that sets of studies supported empirical hypotheses.  Multiple-study 

articles often reported three or more successful replication studies (Schimmack, 2012).  The 

success rate of published replication studies was typically very high.  In fact, the modal success 

rate in multiple study articles is 100%.  These results gave the impression that psychological 

theories rest on a foundation of strong empirical evidence.  

This impression changed when Bem (2011) published 9 incredible demonstrations that 

extraverts, but not introverts, can predict random future events above chance levels.  Rather than 

revealing a surprising new human ability, Bem’s article unveiled questionable research practices 

that can produce misleading results (Francis, 2012; Schimmack, 2012). In response to Bem’s 

controversial article, psychologists have become more aware that publication bias undermines 

the ability of multiple-study articles and meta-analyses to guard against false positive results. 

In our opinion, the main problem that plagues psychological science is the selective 

publishing of significant results of studies with low statistical power. Methodologists have long 

known about the negative effects of publication bias (Sterling, 1959). The main problem is that 

publication bias renders nominal error probabilities (e.g, p < .05) meaningless. Rosenthal (1979) 

pointed out that in the worst-case scenario, the nominal type-I error rate of 5% that applies to all 

studies that were conducted is consistent with 100% type-I errors in the subset of studies selected 
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for significance.  Another problem is that publication bias inflates observed effect sizes. Thus, 

even if the original finding was not a false positive result, replication studies may produce much 

smaller and practically insignificant effect sizes.   

We emphasize the importance of low power because publication bias is less of a concern 

if studies have adequate power.  A common recommendation is to plan for 80% power (Cohen, 

1988); that is 8 out of ten replication studies would produce a significant result, if the original 

study produced a true positive result.  Even if there were selection bias, replication studies 

would, on average, still produce 80% significant results. Thus, the actual power of psychological 

studies is important to evaluate the credibility of published results.  

Cohen (1962) made a first attempt to estimate the average power of studies reported in 

the Journal of Abnormal and Social Psychology.  His method yielded a median power of 50% to 

detect a medium effect size. Power to detect small effect sizes was very low and only large effect 

sizes could be detected with high probability.  In the following decades psychologists have noted 

no improvement in statistical power or evidence that psychologists use a priori power analysis to 

plan sample sizes (Sedlmeier & Giegerenzer, 1989; Schimmack, 2012).   

The problem with Cohen’s method of examining power is that estimates are based on a 

priori effect sizes. This method does not provide a direct estimate of the typical power of studies 

which depends on the actual population effect sizes of these studies.  The goal of this article is to 

introduce a statistical method that can estimate the average power of a set of studies under the 

most extreme conditions; that is, (a) population effect sizes are unknown, (b) population effect 

sizes are heterogeneous, (c) the distribution of population effect sizes is unknown, and (d) studies 

are selected for significance.   
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Power and Replicability 

Replicability is acknowledged to be a requirement of good science (Popper 1934), but it 

is less clear how replicability should be defined and measured. Replicating something means to 

copy or reproduce something.  In the context of psychological research, replicating a study 

means to copy or reproduce a previous study. When a replication study is carried out, the study 

can produce the same result or it may produce a different result.  A replication study that 

produces the same result is considered a successful replication study.  We define replicability as 

the probability of carrying out a successful replication study.  

We can distinguish two factors that influence replicability. One factor concerns the 

ability to reproduce exactly the same conditions as in an original study. The second factor is 

sampling error. Even if conditions are identical and samples are drawn from the same population, 

sampling error will produce different results. This is the main reason why it is necessary to use 

sampling distributions and statistics to draw inferences from samples about populations. Without 

sampling error, results of identical studies would be identical.  

Sampling error creates problems for the definition of replicability because no two studies 

will produce identical results. Thus, some other criterion needs to be used to define a successful 

replication.  The most widely used criterion for a successful replication is statistical significance 

(Killeen, 2005). This definition goes back to Fisher, who stated that “a properly designed 

experiment rarely fails to give ... significance” (Fisher, 1926, p. 504).  Therefore, it is not 

sufficient that an original study produced a significant result. Exact replications of the original 

study should also produce more significant than non-significant results.  

Neyman and Pearson (1933) formalized this requirement in their model of inference that 

distinguishes type-I and type-II errors. The failure to reject a false null-hypothesis (or to accept a 
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true alternative hypothesis) is called a type-II error and the probability of avoiding a type-II error 

is called statistical power.  Thus, a properly designed experiment should have high statistical 

power because high statistical power ensures that future replication studies will produce a high 

rate of significant results.  Most psychologists have learned that a good experiment should have 

80% power (Cohen, 1988).  A study with 80% power is expected to produce 4 out of 5 

significant results in the long run.  If psychological studies had 80% power, it would also justify 

that up to 80% of published results in psychology journals are successful.  Although it is well-

known that a priori power should be 80%, the actual power of psychological studies is unknown, 

although it is unlikely to be 80% (Sterling et al., 1995). The aim of z-curve is to estimate the 

actual power of psychological studies and to use this estimate to predict the outcome of 

replication studies.    

False Positives and Replicability 

It is important to distinguish two reasons for a replication failure.  One possible reason is 

that the original study reported a true positive result and the replication study produced a type-II 

error (a false negative result). Another reason could be that the original result was a false positive 

result. Discussions of replication failures often do not clearly distinguish between these two 

possibilities and create unnecessary confusion. In our opinion it is very difficult and not very 

productive to estimate the percentage of false positive results in psychology.  

One problem is that it is difficult to demonstrate the absence of an effect and attempts to 

do so require large samples. Another problem is that the distinction has no practical 

consequences if studies with true positives have very low power.  Type-I errors are expected to 

produce a significant result with the probability set by the criterion for significance, typically 

5%. A true positive result with very low power could have a probability of 6% to produce a 
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significant result.  Both studies are likely to produce much more non-significant results than 

significant ones (94/100 vs. 95/100), and the observed success rates make it impossible to 

distinguish between false positive and true positive results.  

Once we take replicability into account, the distinction between false positives and true 

positives with low power becomes meaningless, and it is more important to distinguish between 

studies with good power and studies with low power as well as false positives (i.e., False 

Positive & True Positive with low power vs. True Positive with High Power). A minimum 

standard for good power is 50% (Tversky & Kahneman, 1971). If power is greater than 50%, a 

study is more likely to produce a correct result (a true positive result) than an incorrect result (a 

false negative result).  

In conclusion, we agree with Fisher, Tversky and Kahneman, and Cohen that good 

studies should have high power and we consider 50% power a minimum standard and 80% 

power a desirable goal for the average power of psychological studies. If studies in psychology 

would meet these standards, published true positive results are replicable and false positive 

results are rare and are much more likely to fail in replication attempts than true positive results.  

An Empirical Approach to Estimating Replicability 

One way to estimate replicability is to conduct actual replication studies. In response to 

the replication crisis, several initiatives have pursued this approach. The Many-Labs approach 

focuses on a single original study that is replicated as closely as possible across several labs 

(Klein et al., 2014).  Ignoring slight variations in sample sizes for the moment, the average 

success rate across the many labs provides an estimate of replicability because power determines 

the long-run success rate of exact replication studies.  A superior approach would be to conduct a 

meta-analysis of the replication studies, use the average effect sizes as an estimate of the 
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population effect size, and use this population effect size and the sample size of the original 

study to determine its replicability.  The main drawback of this approach is that it can only be 

applied for a limited set of studies and does not provide an estimate of replicability for larger sets 

of original studies.  

A second approach is to pick a set of original studies and conduct one replication study of 

each study (Open Science Collaboration, 2015).  This approach does not provide accurate 

estimates of replicability for single studies, but the average success rate provides an estimate of 

the average true power of the original studies. The OSC reproducibility project found that only 

36% (35 out of 97) replication studies produced a significant result. This finding raised concerns 

that psychology has a replication crisis. The study also suggested differences between 

disciplines. Whereas 50% of results from cognitive psychology could be replicated, the success 

rate for social psychology was only 25%. This abysmal outcome casts doubt about the 

replicability of social psychological findings that are used to support social psychological 

theories and are presented as facts in social psychology textbooks. The low replicability of social 

psychology may explain why even replication studies with large samples have failed to provide 

evidence for classic findings like ego-depletion (Hagger et al., 2016), facial feedback effects 

(Wagenmakers et al., 2016), and social priming effects (Cheung et al., 2016; O'Donnell, Nelson, 

McLatchie, & Lynott, 2017).  

The use of actual replication studies has advantages and disadvantages. The advantage is 

that it takes sampling error and practical problems of recreating identical conditions into account. 

A result that can be replicated with high frequency in actual replication studies even under 

slightly different conditions can be considered robust. The disadvantage of this approach is that 

actual replication studies are expensive, time-consuming, and sometimes impossible. As a result, 
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it is difficult to conduct replications for a large representative sample of studies.  Not 

surprisingly, replication studies have focused on relatively simple paradigms in cognitive and 

social psychology and the replicability of results in other disciplines is lacking (Tackett et al., 

2017).  

The use of statistical estimates based on original test results has the advantage that it is 

relatively inexpensive and can be applied to studies that are difficult to recreate. Thus, it is easy 

to estimate replicability for large and representative samples of studies. In fact, text scrapping 

technology makes it possible to obtain estimates from the population of all published articles.  

Thus, a statistical approach based on published test statistics can complement recent initiatives to 

estimate replicability with actual replication studies. 

Statistical Approaches 

Statistical methods for the estimation of replicability are essentially meta-analyses of 

observed power (Schimmack, 2012, 2015). Statisticians have warned against the use of observed 

power for a single study because observed power estimates are highly sensitive to sampling 

error, which makes these estimates essentially meaningless (Hoenig & Heisey, 2001; 

Schimmack, 2015).  However, sampling error decreases as the number of cases increases and 

meta-analyses of observed power can produce informative estimates of true power (Schimmack, 

2015).  The main problem for meta-analyses of observed power is that selection for significance 

inflates observed effect sizes. As observed power is based on observed effect sizes, meta-

analyses of studies selected for significance produce inflated estimates of power. We examine 

two methods that aim to correct for the selection effect.  
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P-Curve 

Simonsohn, Nelson, and Simmons (2014) developed a statistical method to adjust 

observed effect sizes for the inflation introduced by selection for significance. Although their 

main focus was on effect sizes, the article also mentions that the method could be used to 

estimate power.  “As with effect sizes, p-curve’s estimate of power will correct for the inflated 

estimates that arise from the privileged publication of significant results” (p. 676).   

One problem is that P-curve assumes that all studies have the same population effect size. 

Although this is an unrealistic assumption, Simonsohn et al. (2014) suggest that “p-curve is 

robust to heterogeneity in effect size across studies” (p. 680).  To our knowledge, the robustness 

of p-curve has not been tested. For this reason, we included p-curve in our simulation studies. 

We used the r-code posted on the p-curve website for our simulations and validated our results 

against results provided by the online app on the p-curve website (Simonsohn, 2017).  

Z-Curve 

Z-curve follows traditional meta-analyses by converting all statistical tests into z-scores 

(Stouffer, Suchman, DeVinney, Star & Williams, 1949; Rosenthal, 1979). The only difference to 

a traditional meta-analysis is that the sign of z-scores is not meaningful for sets of studies with 

different research hypotheses. Thus, all z-scores are converted into absolute z-scores. Absolute z-

scores provide evidence about the strength of evidence against the standard null-hypothesis that 

the population effect size is zero. We use z-scores because they can be easily converted into 

power estimates and because all observed test results can be modeled as a function of a single 

sampling distribution, namely the standard normal distribution  

Z-curve allows for heterogeneity in power by assuming that observed z-scores are 

obtained from multiple sampling distributions with different means. A standard normal 
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distribution with a mean of 1, which corresponds to 17% power, will mostly produce low z-

scores, whereas a standard normal distribution with a mean of 3, corresponding to 85% power, 

will produce higher z-scores.  In reality, there may be as many normal distributions as observed 

z-scores (each study has a different power), but it is possible to approximate the distribution of 

observed z-scores with a finite number of standard normal distributions.  To fit the model to 

observed z-scores, the model gives different weights to each normal distribution.  Figure 1 

illustrates how z-curve models an observed distribution of absolute z-scores.  

 

The dotted black line in Figure 1 shows the density distribution of observed z-scores 

between 1.96 (p < .05, two-tailed) and 6.  The value of 6 is arbitrary, but it is unnecessary to fit 

the distribution to z-scores greater than 6 because power for these z-scores is essentially 1.  Z-

curve aims to fit the observed distribution with 7 normal distributions with means ranging from 0 

to 6.  The bottom blue line shows the contribution of the normal distribution centered over 0.  

Because there are no negative values, this is actually a half-normal distribution. The second line 

from the bottom shows the contribution of the normal distributions for means 0 and 1. The 

additional area not covered by the area for a mean of 0 shows the contribution of the normal 
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distribution centered at 1.  The size of each area is determined by the weight given to each of the 

seven standard normal distributions. The weights for the model in Figure 1 are 17% for m = 0, 

29% for m = 1, 14% for m = 2, 12% for m = 3, 14% for m = 4, 14% for m = 5, and 0% for m = 6.  

The true power for the seven normal distributions is a simple function of the area under the curve 

in the tails of the criterion value that corresponds to a two-tailed test with alpha = .05.  

Power = 1-pnorm(1.96,m) + pnorm(-1.96,m) 

The power values corresponding to the means of the seven standard normal distributions 

are 5%, 17%, 52%, 85%, 98%, 99%, and 99.99%.  

The average power implied by the observed density distribution is the weighted average 

of the seven power values 

100 * (.17*.05 + .29*.17, .14*.52, .12*.85, 14*98 + 14*.99 + 0*99.99) = 50%. 

Thus, the observed distribution of z-scores in Figure 1 implies that the set of studies with 

significant results has an average power of 50%.  

As noted above, the observed distribution of z-scores could have been produced in many 

ways. It is not possible to interpret the weights assigned to the mixture models as realistic values 

of the percentage of studies sampled from a particular normal distribution. Hence, it is not 

possible to infer from the 17% estimate for m = 0 that 17% of the studies were false positives. 

Although different mixtures are possible, the main assumption of z-curve is that the weighted 

average of mixture models that fit an observed distribution provides an accurate estimate of the 

average power of this set of studies.  We conducted our simulation studies to examine the ability 

of z-score to fulfill this promise.  

The key difference between p-curve and z-curve is that p-curve assumes that all studies 

have the same power. In contrast, z-curve allows for heterogeneity in power by using a mixture 
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model with multiple standard normal distributions that represent different levels of statistical 

power. Although p-curve may be relatively robust if the assumption of equal power is violated, 

we predict that z-curve will outperform p-curve with heterogeneous data because it allows for 

heterogeneity and makes no assumptions about the distribution of true power in the set of 

studies.  

Simulation Study 

We used Z values as the observed test statistics for our simulations. The use of Z-scores 

does not give z-curve an advantage because p-curve also allows Z values as test statistics and 

extensive simulations with a variety of test statistics (F-values, chi-square) have shown that 

simulations with different test statistics lead to the same results. Moreover, Brunner and 

Schimmack (2016) demonstrated in extensive simulations that the type of test statistic (F, t, or 

chi-square) does not influence the outcome of simulation studies.  

We used a 3 x 3 design for our simulation study.  One factor varied the average true 

power with values of .31, .50, and .80.  The other factor varied the distribution of true power. 

One condition simulated homogeneous data. The second condition simulated heterogeneity with 

a normal distribution, and the third condition simulated heterogeneity with a skewed distribution.  

We used a fixed set of k = 100 studies for all simulations.  For each condition, we ran 5,000 

simulations.   
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Table 1.   Results of simulation studies for P-Curve and Z-Curve  

Simulation 

/ Method 

Mean True 

Power 

Mean Est. 

Power 

 

SD 

% Estimates 

+/- .10 

Homogeneity (M = 1.46, SD = 0) 

P-Curve .31 .31 .07 .83 

Z-Curve .31 .33 .08 .79 

Homogeneity (M = 1.96, SD = 0) 

P-Curve .50 .50 .07 .84 

Z-Curve .50 .50 .07 .82 

Homogeneity (M = 2.80, SD = 0) 

P-Curve .80 .80 .04 .94 

Z-Curve .80 .78 .05 .92 

Heterogeneity, Normal (M = 0, SD = 1) 

P-Curve .31 .30 .07 .79 

Z-Curve .31 .31 .07 .82 

Heterogeneity, Normal (M = 1.20, SD = 1) 

P-Curve .50 .56 .07 .67 

Z-Curve .50 .51 .07 .82 

Heterogeneity, Normal (M = 2.75, SD = 1) 

P-Curve .80 .89 .03 .56 

Z-Curve .80 .81 .06 .94 

Heterogeneity, Skewed (M = 0.75, SD = 0.73) 

P-Curve .31 .43 .10 .38 

Z-Curve .31 .31 .07 .84 

Heterogeneity, Skewed (M = 1.03, SD = 1.10) 

P-Curve .50 .74 .07 .03 

Z-Curve .50 .51 .07 .83 

Heterogeneity, Skewed (M = 2.18, SD = 1.93) 

P-Curve .80 .97 .01 .00 

Z-Curve .80 .81 .05 .94 

  

 

Table 1 shows that p-curve performs slightly better than z-curve when all studies have the 

same power.  However, both methods produce a majority of estimates within 10 percentage 

points of the true power.  With normally distributed heterogeneity, p-curve overestimates 

average power, and with high true power produces only slightly more than 50% estimates that 

fall within 10 percentage points of true power.  With skewed distributions of true power, p-curve 
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fails to produce reasonable estimates. In contrast, z-curve showed high large-sample accuracy in 

all conditions.  The standard deviations of the two methods are very similar. However, due to the 

systematic bias in p-curve’s estimates, p-curve has a lower percentage of estimates that fall 

within a +/- 10% interval around true average power.  When power was high (80%) and the 

distribution of true power was skewed, the success rate of P-Curve to produce estimates between 

70% and 90% was zero and the average estimate was 97%.  

In conclusion, the simulation results show that p-curve produces accurate estimates when 

the dataset is homogeneous (i.e., all studies have identical power), but P-curve estimates can be 

dramatically inflated when the distribution of true power is skewed. In contrast, z-curve is not 

affected by heterogeneity or the distribution of true power and produced accurate estimates in all 

conditions.  This is not surprising. Z-curve was developed to fit heterogeneous data, whereas p-

curve was developed for the special case of fixed power.   

Application to Actual Test Statistics 

Demonstration 1:  A Meta-Analysis of Power Posing Effects 

Several published articles have used the results of p-curve to draw inferences about 

replicability.  Simmons and Simonsohn (2017) used p-curve to question the credibility of studies 

that demonstrate an effect of power-posing (i.e., posing in a powerful stance for a brief time can 

instill feelings of confidence & improve performance).  Simmons and Simonsohn’s p-curve 

analysis suggested that published studies provide no evidence for this hypothesis after taking 

selection bias into account.  In response, Cuddy, Schultz, and Fosse (2017) reported the results of 

a more extensive p-curve analysis. They reported a power estimate of 44% with a 90% 

confidence interval ranging from 23% to 63%.  We retrieved the data from the OSF depository to 

reproduce the p-curve result and to obtain an estimate using z-curve.  We reproduced the 44% 
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estimate with the online app and the p-curve r-code. Next, we converted the test statistics into 

absolute z-scores and modeled the absolute z-scores with z-curve. Figure 2 shows the 

distribution of z-scores and the result.  

Unlike plots of p-values, the histogram of z-scores makes it easy to see the presence of 

publication bias or the use of questionable research practices (John, Loewenstein, & Prelec, 

2012), which both produce unrealistic sampling distributions. The histogram of absolute z-scores 

shows a steep drop of observed z-scores around the criterion for statistical significance (z = 1.96, 

p < .05, two-tailed).  Random sampling error cannot produce this drop. Based on the distribution 

of significant z-scores (z > 1.96), z-curve produced an estimate of However, the z-curve estimate 

is only 30%. Figure 2 also shows a 95%CI for the point estimate. This estimate is based on a 

bootstrap method that has been validated by Brunner and Schimmack (2016). Given the 

relatively small number of studies, the 95%CI is relatively wide and ranges from 16% to 56%.   

The z-curve estimate is notably lower than the p-curve estimate of 44%.  The reason for the 

discrepancy is heterogeneity. Figure 2 shows that most studies are just significant, but a few 

studies reported strong evidence (z > 4).  

To examine the robustness of estimates against outliers, we also obtained estimates for a 

subset of studies with z-scores less than 4 (k = 49).  Excluding the four studies with extreme 

scores had relatively little effect on z-curve; replicability estimate = 34%.  In contrast, the p-

curve estimate dropped from 44% to 5%, while the 90%CI of p-curve ranged from 13% to 30% 

and did not include the point estimate.  This suggests further problems with the p-curve method 

of estimating power.  
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In conclusion, our first application of z-curve to actual data reveals that the difference 

between p-curve and z-curve has practical implications. Even studies that investigated a common 

phenomenon produced sufficient heterogeneity to inflate p-curve estimates of average power.  

The z-curve estimate of power was only 30%. The lower bound of the 95% confidence interval 

was above 5%, which makes it possible to reject the null-hypothesis that all studies reported false 

positive results. However, the low average power also implies that the power-posing hypothesis 

is supported by underpowered studies. More importantly, the average power of 30% allows for a 

large subset of studies that reported false positives and it is impossible to distinguish false 

positives from true positives with low power. Thus, it remains unclear which claims about power 

posing effects can be replicated. Only new studies with larger samples can answer this question. 
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In sum, Cuddy et al. (2017) concluded that their p-curve results “reveal strong evidential 

value for postural feedback effects (i.e., “power posing”).  We raise two concerns about this 

conclusion. First, p-curve produces inflated estimates of power when heterogeneity is present. Z-

curve does not have this problem and our z-curve estimate is considerably lower and the lower 

bound of the 95%CI is 16% power.  In our opinion, studies with average power of 30% do not 

constitute robust evidence. Second, 30% power for a homogeneous set of studies may be 

considered sufficient evidence for an effect. However, for a heterogenous set of studies, 30% 

average power does not provide information about specific studies that can be replicated. Thus, 

remains unclear which claims about power posing are true and which effects may be false. At 

best, we can say that some power posing studies had effects on some measured outcome, but we 

do not know how many studies and which outcomes were affected.  To produce robust evidence 

for an effect, it is necessary to conduct studies with more power. 

 

Demonstration 2: Replicability of Psychology 

There is great uncertainty about the replicability of psychological results (Motyl et al., 

2016). The simulation studies showed that z-curve can produce accurate estimates of 

replicability, especially if the set of studies is large. To provide an estimate of replicability for 

psychology in general, we extracted test statistics published in 104 psychology journals in the 

years from 2010 to 2016.  We downloaded all articles as PDF files and converted them to text 

files. We wrote a program in R to extract F-tests, t-tests and z-test that were reported in the 

results section (F(x,xx) = X.XX, t(xx) = X.XX, z = X.XX).  The search yielded 1,008,894 test 

statistics and 66% (k = 662,798) were significant using alpha = .05 (two-tailed).  Figure 3 shows 

the distribution of z-scores.  The shape of the distribution shows that there is heterogeneity in 

power with a long tail of highly significant results that exceed the stringent 5-sigma criterion in 
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particle physics (cf. Schimmack, 2012). However, the figure also shows that the mode of the 

distribution is at the criterion for statistical significance. The distribution of non-significant 

results is not consistent with a plausible sampling distribution. This pattern reveals publication 

bias, the use of questionable research practices, or both.  

The z-curve estimate of replicability was 73%. Given the large number of test statistics, 

the 95% confidence interval around this estimate is very tight and ranged from 71% to 74%. The 

estimate of 73% is surprisingly high in comparison to the 36% successful actual replications in 

the OSC reproducibility project and the estimate of 30% replicability for the power-posing meta-

analysis. There are a number of factors that can explain this discrepancy.   

In the OSC project, social psychology was overrepresented and social psychology was 

less replicable than cognitive psychology. According to this hypothesis, the replication crisis is 

much more severe in social psychology than in other disciplines. A second explanation could be 

that z-curve assumes exact replication studies and that the actual replication studies in the OSC 

project failed to reproduce the original conditions exactly.  A third hypothesis is that the 

automated extraction method included test statistics for trivial hypotheses tests such as 

manipulation checks, whereas the OSC reproducibility project focused on novel theoretical 

predictions. According to this hypothesis, the replicability of novel and theoretically important 

hypothesis would be lower. We test this hypothesis in our third demonstration.  
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Demonstration 3:  Replicability of Focal Tests in Social Psychology 

Motyl et al. (2017) examined the replicability of social psychology. They randomly 

sampled articles from major social psychology journals. They focused on the years 2003/04 and 

2013/14 to examine possible changes in replicability over time. For each study, they picked a 

focal hypothesis test and recorded the test statistic.  The authors used the R-Index (Schimmack, 

2014) to gage the replicability of social psychology.  They obtained scores of 62 for the year 
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2003/2004 and 52 for the years 2013/2014, suggesting no improvement in replicability over 

time.  Thus, we used all years to obtain a single replicability estimate for focal hypothesis tests in 

social psychology. We also downloaded all articles and used the automated extraction method to 

obtain an estimate based on all test statistics. This way we were able to examine whether focal 

hypothesis tests are less replicable than other test statistics reported in psychology journals. 

Figure 4 shows the results based on the automated extraction of all test statistics.  The 

replicability estimate is 65%, 95%CI = [.62,.68].  This estimate is lower than for the larger set of 

psychology journals, suggesting that results in social psychology are less replicable than those in 

other areas of psychology (OSC, 2015; Schimmack, 2017).  However, 65% is still considerably 

higher than the 25% success rate for actual replications of social psychological studies in the 

OSC project.  
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Figure 5 shows the results for Motyl et al.’s (2017) focal hypothesis tests.  The 

replicability estimate is only .47, 95%CI = [.40,.55].  This estimate is nearly 20 percentage points 

lower than the replicability estimate based on the automatic extraction method. This finding 

shows that the automated extraction method produces overly positive results because it does not 

distinguish between focal and non-focal tests. To obtain absolute estimates of replicability it is 

necessary to identify theoretically important test statistics.   

The estimate of 47% replicability has several implications. First, the estimate is not as 

bad as many may have feared.  It is unlikely that most published results in social psychology are 

false positive results. Although we cannot determine the number of false positives an average of 

47% power implies that most published results are not false positives because we would expect 

52.5% replicability if 50% of studies were false positives and the other 50% of studies had 100% 

power. However, the distribution of z-scores in Figure 4 shows that it is unreasonable to assume 

that half the studies had 100% power. Thus, the false positive rate is likely to be less than 50%.   

At the same time, the estimate of 47% implies that the typical study in social psychology 

falls short of the minimum standard of 50% power and most studies do not meet the textbook 

standard of 80% power.  Based on the present results, social psychologists need to improve the 

power of their studies to increase replicability and credibility of published findings.  
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General Discussion 

The main goal of this article was to introduce and evaluate a statistical method, z-curve, 

that estimates the average replicability of a set of studies.  A secondary goal was to compare this 

method to an existing one, p-curve.  Our simulation studies demonstrated that z-curve performs 

well under many different scenarios, whereas p-curve performs well when the studies are 

homogeneous, but not when there is heterogeneity.  With heterogeneous and skewed 

distributions of true power, p-curve overestimates average power.   

Our first demonstration showed that this bias has practical consequences. A recent meta-

analysis of the power-posing effect with p-curve yielded an estimate of 44% power.  The z-curve 

estimate was substantially lower (30%).  The extent of bias varies as a function of several 

unknown factors.  Rather than assuming that p-curve provides a robust estimate, we recommend 

z-curve as the best method to estimate the average the average power of original studies that 

produced a significant result, which we call replicability.  We also recommend that replicability 

estimates obtained with z-curve are reported with a 95% confidence interval because point 

estimates are not very precise unless the set of studies is large (Brunner & Schimmack, 2016). 

Our second demonstration applied z-curve to a large set of test statistics reported in 104 

psychology journals that cover a broad range of disciplines.  We estimated that the average 

power was 72%.  This finding would not justify the notion of a replicability crisis in psychology. 

However, the estimate is based on all test statistics that are reported in an article, including 

manipulation checks, and does not provide an estimate of the replicability of theoretically 

important, novel findings.   
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Our third demonstration showed that replicability for focal hypothesis tests that are used 

to support novel and theoretically important predictions is lower.  Whereas the estimate for 

social psychology based on all statistics was 65%, the estimate for focal hypothesis tests was 

only 47%. This estimate is limited to social psychology and estimates for psychology in general 

might be somewhat higher.  One goal for future research is to conduct replicability analysis for 

all disciplines in psychology based on representative samples of focal hypothesis tests. 

How Replicable is Psychology? 

Our estimates provide valuable information about the extent of the replication crisis in 

psychology.  Based on our results, we think it is unlikely that most published results in 

psychology are false positives, in the strict sense that the population effect size is zero.  At the 

same time, our results suggest that the majority of studies in psychology fail to meet the 

minimum standard of a good study; that is, it should have a 50% chance to produce a true 

positive result when the hypothesis is true (Tvesky & Kahneman, 1971) and even more studies 

fail to meet the well-known and accepted norm that studies should have 80% power (Cohen, 

1988).  Our analysis across disciplines suggests that this is not merely a problem of social 

psychology, but a problem of many areas in psychology.  Z-curve can be used to assess the 

extent of this problem and examine whether recent reforms in psychological publishing are 

effective in reducing publication bias and increasing replicability.  

Limitations 

Z-curve has a number of limitations that can affect its estimates.  Most important, z-curve 

assumes that all studies used the same criterion for statistical significance.  If, for example, a 

study corrected p-values for multiple comparisons, z-curve will not model the selection process 

accurately and overestimate replicability.  In our experience, this is a minor problem because 
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most studies use the p < .05 criterion to reject the null-hypothesis.  Moreover, z-curve could be 

adjusted to allow for study-specific criterion values.  

Another concern is that z-curve adjusts estimates for selection effects, but not for the use 

of questionable research practices.  Future research needs to examine how different questionable 

research practices influence z-curve estimates. Some practices may lead to an underestimation of 

average power.  This could be considered a limitation of z-curve. On the other hand, it can also 

be considered a conservative bias that is justified because the influence of questionable research 

practices on replicability is difficult to predict.  If questionable research practices lead to lower 

estimates, it may even act as a deterrent against the use of these practices.  

Future Directions  

We see a number of future directions for the development of z-curve.  First, it may be of 

interest to estimate the average power before the selection for significance.  As studies with 

significant results, on average, have higher statistical power than studies with non-significant 

results, average power of studies before selection for significance is bound to be lower than the 

average power of studies selected for significance.  However, estimating average power before 

selection may be a difficult statistical problem because it requires an estimate of the size of the 

file-drawer (unpublished, non-significant studies).   

We are also working on validating estimates for subsets of significant results. For 

example, it can be of interest to estimate the average power of studies that produced just 

significant results (e.g., p < .05 & p > .01).  Even with average power of 50%, power for just 

significant results can be considerably lower and would suggest that these results are difficult to 

replicate.  Finally, z-curve and p-curve make the assumption that all test statistics are 

independent. Future research needs to examine how robust z-curve estimates are to violations of 
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this assumption and whether it is possible to develop a method for nested data (multiple test 

statistics nested within studies).  

Conclusion 

In conclusion, methodologists have warned about publication bias and low statistical 

power for decades (Cohen, 1962; Sterling, 1959).  However, until recently empirical researchers 

assumed that these problems were minor and could be ignored.  This perception changed and 

psychologists, at least social psychologists, have wondered about the stability of the empirical 

foundations of their field.  Z-curve provides an opportunity to add some empirical evidence to 

debates about the replicability of psychological findings.  Our statistical approach cannot replace 

actual replication studies. Actual replication studies are still needed to provide convergent 

evidence across independent labs and to ensure that published results are not unique to specific 

historical or situational factors.  Our statistical estimates assume that it is possible to replicate 

original studies exactly.  If variation in the historic or situational context changes results, 

replicability is bound to be lower.  This may explain why we obtained an estimate of 47% for 

social psychology, while the OSC reproducibility project could only replicate 25% of original 

studies.  If this is the case, it is even more important to raise power to 80% to ensure that actual 

replication studies have a success rate greater than 50%.  We are optimistic that recent awareness 

about the extent of the problem in social psychology will have positive effects on replicability. 

Our statistical method of estimating replicability makes it possible to examine whether our 

optimism is warranted.  

  



Estimating Replicability 29 

 

References 

 

Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous retroactive 

influences on cognition and affect. Journal of Personality and Social Psychology, 100(3), 

407-425. http://dx.doi.org/10.1037/a0021524 

Brunner, J. and Schimmack, U. (2016). How replicable is psychology? A comparison of four 

methods of estimating replicability on the basis of test statistics in original studies.  

http://www.utstat.utoronto.ca/~brunner/zcurve2016/HowReplicable.pdf 

Cheung et al. (2016). Registered Replication Report: Study 1 From Finkel, Rusbult, Kumashiro, 

& Hannon (2002).  Perspectives on Psychological Science, 11, 750-764.  

Cohen J. (1962). The statistical power of abnormal-social psychological research: A review. 

Journal of Abnormal and Social Psychology, 65, 145–152. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd Edition), Hilsdale, 

New Jersey: Erlbaum. 

Cuddy, A. J., Schultz, S. J., & and Fosse, N. E. (2017). P-curving A More Comprehensive Body 

of Research on Postural Feedback Reveals Clear Evidential Value For “Power Posing” 

Effects: Reply to Simmons and Simonsohn.  Psychological Science. Forthcoming.  

Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of 

Agriculture of Great Britain, 33, 503–513. 

Francis, G. (2012b). Too good to be true: Publication bias in two prominent studies from 

experimental psychology. Psychonomic Bulletin & Review, 19, 151–156. 

doi:10.3758/s13423-012-0227-9 

http://psycnet.apa.org/doi/10.1037/a0021524


Estimating Replicability 30 

 

Hagger M. S., Chatzisarantis N. L., Alberts H., Anggono C. O., Batailler C., Birt 

A., Zwienenberg M. (2015). A multi-lab pre-registered replication of the ego-depletion 

effect. Perspectives on Psychological Science, 11, 546–573. 

Hoenig, J. M. and Heisey, D.M (2001). The abuse of power: The pervasive fallacy of power 

calculations for data analysis. The American Statistician 55, 19-24. 

John L. K., Loewenstein G., Prelec D. (2012). Measuring the prevalence of questionable research 

practices with incentives for truth telling. Psychological Science, 23, 524–532. 

doi:10.1177/0956797611430953 

Killeen, P. R. (2005).  An alternative to null-hypothesis significance tests. Psychological 

Science, 16, 345-353. https://doi.org/10.1111/j.0956-7976.2005.01538.x  

Klein R. A. et al.  (2014). Investigating variation in replicability: A “many labs” replication 

project. Social Psychology, 45, 142–152. doi:10.1027/1864-9335/a000178  

Motyl, M. et al. (2016). The state of social and personality science: Rotten to the core, not so 

bad, getting better, or getting worse? Journal of Personality and Social Psychology, 113, 

34-58.  doi: 10.1037/pspa0000084.  

Neyman, J. and Pearson, E. S. (1933). On the problem of the most efficient tests of statistical 

hypotheses. Philosophical Transactions of the Royal Society, Series A 231, 289337.  

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. 

Science, 349(6251), aac4716. 

O'Donnell, M., Nelson, L., McLatchie, N. M., & Lynott, D. J. (2017).  Perspectives on 

Psychological Science. 

 

https://doi.org/10.1111%2Fj.0956-7976.2005.01538.x
https://www.ncbi.nlm.nih.gov/pubmed/?term=Motyl%20M%5BAuthor%5D&cauthor=true&cauthor_uid=28447837
http://www.research.lancs.ac.uk/portal/en/people/neil-mclatchie(da0916ac-9e5a-4f3d-a283-abde498b9c84).html
http://www.research.lancs.ac.uk/portal/en/people/dermot-lynott(d424bcc9-d758-4fc6-bc6a-231f83f8a219).html


Estimating Replicability 31 

 

Popper, K. R. (1959). The logic of scientific discovery. English translation by Popper of Logik 

der Forschung (1934). London: Hutchinson. 

Rosenthal R. (1979). The file drawer problem and tolerance for null results. Psychological 

Bulletin, 86, 638–641. 

Schimmack U. (2012). The ironic effect of significant results on the credibility of multiple-study 

articles. Psychological Methods, 17, 551–566 

Schimmack (2015) Meta-analysis of observed power: Comparison of estimation methods.  

https://replicationindex.wordpress.com/2015/04/01/meta-analysis-of-observed-power-

comparison-of-estimation-methods/ 

Schimmack, U. (2016).  A revised introduction to the R-Index.  

https://replicationindex.wordpress.com/2016/01/31/a-revised-introduction-to-the-r-index/ 

Schimmack, U. (2017). Preliminary 2017 replicability rankings of 104 psychology journals.  

https://replicationindex.wordpress.com/2017/10/24/preliminary-2017-replicability-rankings-of-

104-psychology-journals/ 

Sedlmeier P., Gigerenzer G. (1989). Do studies of statistical power have an effect on the power 

of studies? Psychological Bulletin, 105, 309–316. 

Simonsohn, U. (2017). P-Curve online app code. http://p-curve.com/app4/pcurve_app4.052.r). 

Simonsohn, U., Nelson, L. D. and Simmons, J. P. (2014). p-Curve and effect size: Correcting for 

publication bias using only significant results. Perspectives on Psychological Science, 9, 

666-681. 

Simmons, J. P. & Simonsohn (2017). Power Posing: P-curving the evidence. Psychological 

Science, 687-693.  

http://p-curve.com/app4/pcurve_app4.052.r


Estimating Replicability 32 

 

Sterling, T. D. (1959) Publication decision and the possible effects on inferences drawn from 

tests of significance – or vice versa. Journal of the American Statistical Association 54, 

30-34. 

Sterling, T. D., Rosenbaum, W. L., & Weinkam, J. J. (1995). Publication decisions revisited: The 

effect of the outcome of statistical tests on the decision to publish and vice-versa. 

American Statistician, 49, 108–112. doi:10.2307/2684823 

Stouffer, S. A., Suchman, E. A , DeVinney, L.C., Star, S.A., & Williams, R.M. Jr. (1949). The 

American Soldier, Vol.1: Adjustment during Army Life. Princeton University Press, 

Princeton. 

Tackett et al. (2017). It’s time to broaden the replicability conversation: Thoughts for and from 

clinical psychological science. Perspectives on Psychological Science, 12, 742-756. 

https://doi.org/10.1177/1745691617690042 

Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychological 

Bulletin, 76(2), 105-110. http://dx.doi.org/10.1037/h0031322 

Wagenmakers, E.J. et al. (2016). Registered Replication Report: Strack, Martin, & Stepper 

(1988). Perspectives on Psychological Science, 11, 917-928. 

https://doi.org/10.1177/1745691616674458 

 

 

http://psycnet.apa.org/doi/10.1037/h0031322

