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Proponents of the existence of distinct implicit and 
explicit category-learning systems have reported numer-
ous dissociations consistent with this dual-systems 
account (for a review of this extensive literature, see 
Ashby & Maddox, 2011). However, research has failed 
to replicate these findings, or confounds admit alterna-
tive explanations (e.g., Dunn, Newell, & Kalish, 2012; 
Edmunds, Milton, & Wills, 2015; Kalish, Newell, & Dunn, 
2017; Newell, Dunn, & Kalish, 2010, 2011; Nosofsky & 
Kruschke, 2002; Stanton & Nosofsky, 2013).

Here, we examine a study by Smith et al. (2014), who 
claimed to have found “one of the strongest explicit-
implicit dissociations yet seen in the categorization lit-
erature” (p. 447). Their participants learned to categorize 
stimuli varying on two dimensions. For some partici-
pants, optimal performance required learning about 
only one dimension; others had to integrate information 
about both dimensions. As an example, consider line 
stimuli varying in length and angle (Fig. 1a). In a uni-
dimensional, vertical structure, short lines belong to 
Category A and long lines to Category B; angle has no 
bearing on classification. For a diagonal structure, both 
dimensions influence the correct response: Optimal per-
formance requires a decision based on perceptual infor-
mation integrated across dimensions.

Smith et  al. contend that the vertical structure is 
learned via an explicit rule-based process subserved by 
a declarative system, whereas the diagonal structure is 
the domain of an implicit, procedural system that per-
forms information integration. According to this 
account, diagonal structures lie beyond the explicit, 
rule-based system because the optimal strategy is dif-
ficult to describe verbally (Ashby & Valentin, 2017). 
This idea motivated Smith et al.’s critical manipulation 
of feedback (which they also referred to as a manipulation 
of reinforcement). On each training trial, participants in 

an immediate-feedback condition saw the stimulus, 
made a categorization response, and were told whether 
their response was correct. Participants in a deferred-
feedback condition instead responded to blocks of six 
stimuli in a row before receiving feedback stating how 
many of those six responses were correct; but they were 
not told which stimuli they had responded to correctly 
and which incorrectly.

As described by Smith et al. (p. 451), a crucial result 
was an interaction between category structure (vertical 
vs. diagonal) and feedback (immediate vs. deferred) on 
categorization accuracy. Whereas deferring feedback 
had little effect (relative to immediate feedback) on 
accuracy for a vertical structure, it significantly impaired 
diagonal-structure performance. To explain this interac-
tion, Smith et al. argued that deferring feedback selec-
tively disables the implicit category-learning system 
because when feedback is not timely, the temporally 
constrained associative-learning process that embodies 
this system cannot operate. According to this account, 
vertical-structure learning is unaffected by deferring 
feedback because it relies on a verbal rule, and success 
can be evaluated “at block’s end just as at trial’s end” 
(p. 450). In contrast, diagonal learning is disrupted 
because deferring feedback disables the implicit-
learning process required for optimal performance, 
forcing participants to fall back on the explicit system 
that treats each dimension separately.

We offer an alternative interpretation based on dif-
ferences in cognitive complexity and memory demands 
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Fig. 1.  Category structures and experimental results. Examples of the vertical, diagonal, and conjunction category structures used in the 
current experiment are shown in (a). Values on each dimension relate to the length and angle of a line that participants were required to 
classify as belonging to Category A or Category B. Values are in arbitrary units; see Table S1 in the Supplemental Material available online 
for further information. Results for responses over the last 100 categorization trials are shown in (b). Violin plots (left) show the proportion 
of correct categorization responses for participants trained with vertical, diagonal, and conjunction category structures and who were given 
either immediate or deferred feedback. The shape of each plot shows the probability density of the data at different levels of proportion 
correct; the central point and error bars show the mean and 95% confidence interval, respectively. Values above each plot show number of 
participants per condition. The stacked bars on the right show the proportion of participants for whom each type of decision-bound model 
(vertical, horizontal, diagonal, conjunction, or random guessing) provided the best fit to categorization responses in the last 100 trials. Results 
are shown separately for each combination of category structure and type of feedback that participants were trained with.

(Nosofsky, Stanton, & Zaki, 2005). Optimal performance 
with a vertical structure entails a decision strategy refer-
ring to a single dimension value. Optimal diagonal-
structure performance instead requires that, for each 
stimulus, the observer combine two separable dimen-
sion values and remember each unique combination. 
Given the relative ease and low memory demands asso-
ciated with the vertical structure, it is unsurprising that 
deferred feedback has little impact on performance. By 

contrast, it seems reasonable that deferring feedback 
will have a major negative impact on performance in 
the demanding diagonal-categorization task.

To decide between these interpretations—multiple 
systems versus cognitive demands—we introduced a 
conjunction category structure to the design (Fig. 1a). 
Like the diagonal categorization, the conjunction cat-
egorization requires learning about two dimensions. 
Critically, however, unlike the diagonal structure, the 
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conjunction structure is viewed by multiple-system 
theorists as a rule-based task that relies on the explicit 
system. This is because the observer makes separate 
decisions about values on each dimension and then 
combines those decisions to make a categorization 
(“short length and large angle → Category A; otherwise 
Category B”) rather than integrating perceptual infor-
mation across dimensions as for the diagonal task. We 
emphasize that in numerous previous studies, multiple-
systems theorists themselves have used conjunction 
structures as major examples of what they theorize are 
rule-based tasks (e.g., Filoteo, Lauritzen, & Maddox, 
2010; Helie & Ashby, 2012; Maddox, Bohil, & Ing, 2004).

According to the multiple-systems account articu-
lated by Smith et  al., conjunction-task performance 
should be unaffected by deferring feedback because 
conjunction structures are learned by an explicit rule-
based system, and deferring feedback does not affect 
rule-based learning. Instead, as theorized by Smith 
et  al., rule-based learning “would flourish under 
deferred reinforcement” (p. 450). By contrast, under the 
cognitive-demands interpretation, conjunction perfor-
mance should suffer from deferred feedback just as for 
the diagonal task: Clearly, the cognitive complexity and 
memory demands of the conjunction structure are 
greater than for the vertical structure.

Method

Participants

This experiment was run online via Amazon Mechanical 
Turk. A demonstration version of the task can be 
accessed at http://unsw-mlp-deffb.appspot.com? 
cat=1&fb=1. A total of 500 participants (235 females; 
age: M = 36.9 years, SEM = 0.5) were randomly assigned 
to category structure (vertical, conjunction, diagonal) 
and feedback (immediate, deferred) conditions; Figure 
1b shows the sample size in each condition. Our sample 
size of approximately 80 per condition was significantly 
larger than that of Smith et al. (21 per condition), and 
it gave us a power of .98 to detect an interaction 
between category structure and feedback type with an 
effect size (ηp

2) of .048 (the effect size observed by 
Smith et al.). Each participant received $5 for complet-
ing the task (which took ~30 min). The best-performing 
half of participants also received a performance-related 
bonus of $3 (see below). This study was approved by 
the Human Research Ethics Advisory Panel (Psychol-
ogy) of UNSW Sydney.

Apparatus, stimuli, and procedure

The multiple-systems theory is intended to apply gener-
ally to the class of separable-dimension stimuli. The 

stimuli we used here were lines varying in length and 
angle. These are classic examples of separable-dimension 
stimuli and have been used in numerous previous exper-
iments published by multiple-systems theorists (e.g., 
Ashby, Ell, & Waldron, 2003; Filoteo et al., 2010). Smith 
et al. used alternative stimuli defined by the area of a 
rectangle and the density of green pixels within the 
rectangle (but did not provide a reason for this choice). 
Although this possibility is not the central theme of this 
Commentary, we were concerned that such stimuli may 
give rise to a salient emergent dimension based (for 
example) on the total number of green pixels in the 
display. If so, the psychological category structures 
learned by some participants might not correspond to 
those intended by the experimenters. We decided to 
use the line stimuli to avoid this potential difficulty, 
since there is less potential for salient emergent dimen-
sions to arise for these stimuli.

Stimulus presentation was controlled by jsPsych soft-
ware (de Leeuw, 2015). Each stimulus was a single blue 
line presented on a white background. Table S1 in the 
Supplemental Material available online details the pro-
cedure used to generate the stimuli, and Figure 1a 
shows examples of the resulting category structures.

Participants were informed that on each trial they 
would see a line and that their task was to decide 
whether it belonged to Category C or Category M by 
pressing either the C or M key, as appropriate. For some 
participants—chosen randomly—Category A (for stimu-
lus generation) was mapped onto Category C (for 
responses) and Category B was mapped onto Category 
M; for the remaining participants, this was reversed. 
Participants were told that they should try to make as 
many correct responses as possible and that once the 
experiment was complete, they would receive a $3 
bonus if their accuracy was above average compared 
with that of the other participants. Participants in the 
immediate-feedback condition were informed that they 
would be told after each response whether it was cor-
rect. Participants in the deferred-feedback condition 
were informed that after they had responded to six 
lines, they would be told how many of those six 
responses were correct, “but you won’t be told which 
individual responses were correct and which were 
incorrect.” Check questions were used to verify that 
participants had understood all instructions before trials 
began.

Participants completed 17 sets of 30 trials each (510 
trials total). On each trial, the line stimulus was pre-
sented centrally inside a white square with a black 
border (side length = 300 pixels) until the participant 
made a response. Participants in the immediate-
feedback condition saw a message saying either “cor-
rect” or “incorrect” (presented centrally for 800 ms), 
followed by a blank interval of 800 ms before the next 

http://unsw-mlp-deffb.appspot.com?cat=1&fb=1
http://unsw-mlp-deffb.appspot.com?cat=1&fb=1
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trial began. In the deferred-feedback condition, for the 
first five trials in each six-trial block, each response was 
followed by the next stimulus after a blank interval of 
833 ms. The sixth response was followed by the feed-
back “You scored X out of 6” (displayed for 4,800 ms), 
where X was the number of correct responses in the 
previous block. The next six-trial block then began after 
a blank interval of 1,000 ms. All participants took a 
short break after each set of 30 trials.

Data analysis and formal modeling

Following Smith et al., we analyzed participants’ catego-
rization accuracy over the final 100 trials as a function 
of category structure (vertical, diagonal, conjunction) 
and feedback (immediate, delayed). We also modeled 
participants’ category choices over the final 100 trials 
to investigate the classification strategy that they had 
adopted and, in particular, how this strategy was influ-
enced by deferring feedback. We fitted five different 
models to each participant’s data. Four of the models 
differed according to where hypothesized category 
boundaries lay in the stimulus space shown in Figure 
1a: (a) vertical boundary; (b) horizontal boundary; (c) 
diagonal boundary; and (d) conjunction, given by com-
bining a vertical and a horizontal boundary. The fifth 
model accounted for random guessing. We used a max-
imum-likelihood criterion to estimate the parameters of 
each model (e.g., what is the x-value of the vertical 
boundary through stimulus space that best partitions a 
participant’s “Category A” and “Category B” responses?). 
We then used the Bayesian information criterion (BIC: 
Schwarz, 1978) to determine the best-fitting model for 
each participant. The BIC penalizes more complex mod-
els by including a penalty term based on the number of 
parameters in the model.

Results

Accuracy-based analyses

Experiment code and raw data from this experiment 
are available at https://osf.io/6s8tc. Figure 1b shows 
mean accuracy over the final 100 trials in each condi-
tion. A 3 (category structure: vertical, diagonal, conjunc-
tion) × 2 (feedback: immediate, delayed) analysis of 
variance (ANOVA) revealed main effects of category 
structure, F(2, 494) = 65.7, p < .001, ηp

2 = .21, and feed-
back, F(1, 494) = 82.5, p < .001, ηp

2 = .14, as well as a 
significant interaction, F(2, 494) = 9.62, p < .001, ηp

2 = 
.037. Šidák-corrected pairwise t tests (critical α = .017) 
revealed that deferring feedback significantly impaired 
accuracy for the diagonal structure, t(151) = 6.33, p < 
.001, d = 1.02, and for the conjunction structure, t(187) 

= 7.25, p < .001, d = 1.08, but not for the vertical struc-
ture, t(166) = 1.82, p = .071, d = 0.28.

To decompose the interaction revealed by the omni-
bus ANOVA, we ran follow-up 2 × 2 ANOVAs to com-
pare the effect of feedback between each pair of 
category structures. For the 2 × 2 analysis of vertical 
and diagonal conditions, we found a significant Cate-
gory Structure × Feedback interaction, F(1, 317) = 13.8, 
p < .001, ηp

2 = .042, indicating that deferred feedback 
caused a greater impairment in the diagonal condition 
than the vertical condition. This replicates the previous 
finding of Smith et  al. (despite some differences in 
stimuli and procedure) and was a key dissociation that 
they pointed to as evidence for dissociable category-
learning processes. To recap, they argued that learning 
a diagonal structure requires an implicit, associative-
learning system in order to integrate information across 
the two stimulus dimensions, and that this associative-
learning system cannot operate when feedback is 
deferred.

Critically, however, the 2 × 2 analysis of the vertical 
versus conjunction conditions also yielded a significant 
interaction, F(1, 353) = 16.0, p < .001, ηp

2 = .045, with 
greater feedback-related impairment in the conjunction 
condition than the vertical condition. That is, we 
observed the same feedback-related dissociation for the 
conjunction condition as we did for the diagonal condi-
tion. Analysis of the diagonal and conjunction condi-
tions did not yield a significant interaction, F(1, 338) = 
0.002, p = .96, ηp

2 < .001. In other words, the magnitude 
of the effect of deferring feedback did not differ sig-
nificantly for participants trained with a diagonal versus 
a conjunction structure. Evidence for this null effect is 
bolstered by a Bayesian statistical analysis reported in 
our Supplemental Material available online, with a 
Bayes factor of 45.9 in favor of the null interaction. This 
lack of a difference in the magnitude of the deferred-
feedback effect across the diagonal and conjunction 
conditions is not central to our lines of argument, 
because we make no claim that those two conditions 
are exactly equated in terms of their overall cognitive 
complexity and memory demands. Nevertheless, the 
result severely challenges the multiple-systems account 
of the deferred-feedback effects, because (according to 
this account) the diagonal condition is an information-
integration task and the conjunction condition a rule-based 
task. That is, this experiment shows that information-
integration structures are not necessary to produce an 
impairment by deferred feedback.

One further detail of our findings is notable: Perfor-
mance was significantly better for the vertical task than 
the diagonal task when immediate feedback was given, 
t(159) = 4.10, p < .001, d = 0.65. This finding is consis-
tent with decades of research showing that the diagonal 

https://osf.io/z2b75/
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structure is harder for humans to learn (e.g., Ashby 
et al., 2003; Kruschke, 1993; Newell et al., 2010; Nosofsky 
et al., 2005). However, in Smith et al.’s study, vertical- 
and diagonal-task performance did not differ signifi-
cantly when immediate feedback was given in the final 
100 trials of training, and on this basis, they argued that 
task difficulty was matched in their study. We note, 
though, that mean accuracy for their vertical task was 
5% higher than for their diagonal task. This (nonsignifi-
cant) difference was similar to the corresponding 
vertical-versus-diagonal difference in our experiment 
(7.3%), which was significant, most likely as a conse-
quence of our study’s much greater statistical power. 
Smith et al.’s study (with only 21 participants per condi-
tion) had a power of only .54 to detect a vertical-versus-
diagonal difference of this size (d = 0.65), so their null 
result under immediate feedback does not license the 
conclusion that task difficulty was matched.1

Model-based analyses

Plots of individual participants’ categorization responses 
labeled with the best-fitting model are available at 
https://osf.io/6s8tc. Visual inspection of these plots sug-
gests that our model-fitting procedure was valid (e.g., 
for participants for whom the diagonal model was 
found to provide the best fit, the plot of Category A/B 
responses typically shows a clear diagonal division).

Figure 1b shows the proportion of participants in 
each condition for whom each model provided the best 
fit. For participants trained with immediate feedback, 
the modal best-fitting model was the appropriate model 
for that category structure: For participants trained with 
a vertical structure, the vertical model performed best 
overall; for the diagonal task, the diagonal model per-
formed best; and for the conjunction task, the conjunc-
tion model performed best. By contrast, under training 
with deferred feedback, a unidimensional model per-
formed best regardless of category structure. The find-
ing that, for the diagonal condition, deferring feedback 
promoted use of a unidimensional strategy replicates 
the findings of Smith et al. But, crucially, our data show 
this pattern is not specific to information-integration 
category structures, as deferring feedback had the same 
effect for our conjunction condition (which, according 
to the multiple-systems account, is rule based). That is, 
participants faced with a difficult, cognitively demand-
ing diagonal or conjunction structure tended to fall 
back on a unidimensional (vertical/horizontal) strategy 
when feedback was deferred. Consistent with this char-
acterization, results revealed that the distribution of 
best-fitting models for the diagonal and conjunction 
conditions was significantly different when feedback 
was immediate, χ2(4) = 71.1, p < .001, but did not differ 

significantly when feedback was deferred, χ2(4) = 5.27, 
p = .26. Contrary to Smith et al.’s claim that deferred 
feedback “sharply dissociates” information-integration 
and rule-based categorization systems, our results show 
that the effect of deferring feedback on participants’ 
pattern of classification is not selective to tasks that 
(according to the multiple-systems account) require 
information integration, because exactly the same pat-
tern was seen for a structure which (according to this 
account) was rule based. In both cases, when feedback 
was deferred, participants fell back on a one-dimensional 
strategy. The finding that many participants use a one-
dimensional strategy as a basis for classification when 
they fail to solve the intended categorization problem 
does not, in our view, imply that some separate system 
is involved. Instead, it seems natural that participants 
would resort to a simple strategy entailing low cognitive 
demands when they fail to solve a highly demanding 
task.

Discussion

Smith et al. argued that deferring feedback specifically 
impairs diagonal-structure performance because it dis-
ables the implicit associative system required for 
information-integration learning but leaves an explicit 
rule-based system unhindered. Contrary to this sugges-
tion, our results showed that impairment when feedback 
is deferred is not specific to diagonal, information-
integration structures but also occurs for conjunction 
structures that (according to the multiple-systems view) 
are rule based. These findings do not follow from Smith 
et  al.’s multiple-systems account but follow naturally 
from a cognitive-demands account: The cognitive com-
plexity and memory demands of diagonal and conjunc-
tion tasks are greater than for the vertical task, so 
deferring feedback will impair both two-dimensional 
tasks and may drive participants to a less-demanding 
unidimensional strategy.

A multiple-systems theorist might try to dismiss our 
findings because we violated methodological proce-
dures for investigating “dissociations.” For example, 
Smith et al. argued that their vertical and diagonal tasks 
were equated in difficulty for participants who received 
immediate feedback, and it was only deferred feedback 
that impaired diagonal-task performance. However—as 
noted above—their failure to find a significant differ-
ence in difficulty when feedback was immediate was 
likely a consequence of their study being underpow-
ered. Smith et al. advanced auxiliary lines of argument 
to support their claim of equal task difficulty when 
feedback was immediate. We address these arguments 
in detail in the Supplemental Material. The most impor-
tant point is that the general claim that the vertical and 

https://osf.io/6s8tc
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diagonal structures are matched in difficulty conflicts 
with decades of empirical research, and our own data 
yield the ubiquitous result that the diagonal task is 
more difficult. Notwithstanding issues regarding statisti-
cal power, a more limited claim might be made that 
task difficulty was matched in the special case in which 
Smith et al.’s rectangle-pixel stimuli were used; how-
ever, Smith et al. provide no explanation of what aspect 
of their stimuli might yield that highly unusual result.

One approach to replying to our Commentary is to 
hypothesize that effects of deferred feedback will 
depend on both the implicit or explicit nature of the 
task as well as the cognitive complexity of the task to 
be solved. This is a reasonable possibility that should 
be pursued in future research. However, it is not the 
hypothesis advanced by Smith et  al., who made no 
allowance for a role of cognitive complexity in mediat-
ing the effects of deferred feedback; indeed, they 
instead advanced the untenable general claim that the 
vertical and diagonal tasks were matched in difficulty.

Importantly, we are not denying the interest value 
or even the plausibility of the hypothesis that separate 
cognitive neural systems—governed by different oper-
ating characteristics—mediate learning of different cat-
egorization tasks. Instead, our concern is with the 
evidence base used to bolster the hypothesis. Smith 
et al.’s manipulation of rule-based versus information-
integration structure was confounded with factors relat-
ing to cognitive complexity and task difficulty, and the 
current experiment provides clear evidence that these 
factors influence the effects of interest. Thus, our study 
adds to the growing body of work questioning the dis-
sociation logic that has been used thus far to bolster 
the multiple-category-systems hypothesis.

Finally, a limitation of our Commentary is that we 
have not provided rigorous definitions of the interre-
lated constructs of cognitive complexity, memory 
demands, and task difficulty. Our goal, however, is not 
to develop a complete theory of the many factors that 
may modulate the effect of deferred feedback on cat-
egorization performance. Instead, our concern is that 
Smith et al. attributed all of the effects to whether the 
task was rule based (explicit) or information-integration 
based (implicit) and claimed that they had produced 
one of the strongest explicit-implicit dissociations yet 
seen in the categorization literature. We believe that 
their conclusions were overstated.
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Note

1. Because Smith et al.’s raw data were not available at the time 
this Commentary was written, we could not conduct Bayesian 
tests of strength of support for their null hypothesis that the 
vertical and diagonal tasks were equally difficult. Nor could we 
compare performance across the two tasks earlier in training, 
prior to the final 100 trials.
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