Supplement for DataColada[76]

This version: 2019 04 16

Written by Uri Simonsohn (urisohn@gmail.com)

I. Maluma-Takiti example (get everything: .zip)

1) Survey (.qsf | .pdf)

2) Data: Wave 1 (.<u>csv</u>)

3) Data: Wave 2 (.<u>csv</u>)

4) R Code (.R)

For Figures 1 & 2 in post, and bootstrap under the null

II. Probability I² >0 under homogeneity is at least 40%

This <u>R Code</u> reports Monte Carlo simulations that support that.

III. Re-analysis of Klein et al Many Labs, MTurk sample, across days

The post notes that while McShane et al interpreted $I^2=21\%$ in the Klein et al Many Labs paper, MTurk sample, as "non-trivial" heterogeneity, such number is slightly *below* what's expected under homogeneity ($E(I^2)=24\%$).

R Code

IV. Ebersole et al. overall p-value for heterogeneity

The post reports, in Table 1, an average heterogeneity of 12.9%, p=.17, for the 16 studies in Ebersole et al.

R Code

Note: as mentioned in the post, Table 4 in Ebersole et al. almost surely reports results obtained with a coding error that noticeably increase heterogeneity, the correct overall p-value for heterogeneity in that sample is much higher than p=.17

V. Links to Many Labs papers in Table 1

Table 1. These are Many Labs results not cited in papers claiming heterogeneity is unavoidable

Paper	Topic	Heterogeneity Result	ts	Paper
O'Donnell et al (2018)	Professor priming and trivial pursuit	$I^2 = 17.4\%$	p = .170	. <u>pdf</u>
Bouwmeester et al (2017)	Contribution of \$ to common project	$l^2 = 2.7\%$	p = .660	. <u>pdf</u>
Cheung et al (2017)	Response to betrayal in relationship	$l^2 = 3.1\%$	p = .496	. <u>pdf</u>
Verschuere et al (2018)	Moral reminders and cheating behavior	$I^2 = 0.0\%$	p = .780	. <u>pdf</u>
Alogna et al (2016) - Design 1	Does describing a suspect reduce recognition	on? $I^2 = 0.0\%$	p = .502	. <u>pdf</u>
Alogna et al (2016) - Design 2	Does describing a suspect reduce recognition	on? $I^2 = 0.0\%$	p = .810	(same)
Ebersole et al (2016)	16 different designs (average, Stouffer's p)	$I^2 = 12.8\%$	p = .170	. <u>pdf</u>